Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Metabolites ; 10(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796671

ABSTRACT

Spider venoms are highly complex mixtures. Numerous spider venom metabolites are uniquely found in spider venoms and are of interest concerning their potential use in pharmacology, agriculture, and cosmetics. A nontargeted ultra-high performance high-resolution electrospray tandem mass spectrometry (UHPLC-HR-ESI-MS/MS) approach offers a resource-saving way for the analysis of crude spider venom. However, the identification of known as well as the structure elucidation of unknown low molecular mass spider venom compounds based on their MS/MS spectra is challenging because (1) acylpolyamine toxins are exclusively found in spider and wasp venom, (2) reference MS/MS spectra are missing in established mass spectrometry databases, and (3) trivial names for the various toxin metabolites are used in an inconsistent way in literature. Therefore, we introduce the freely accessible MS website for low molecular mass spider venom metabolites, venoMS, containing structural information, MS/MS spectra, and links to related literature. Currently the database contains the structures of 409 acylpolyamine toxins, 36 free linear polyamines, and 81 additional spider venom metabolites. Implemented into this website is a fragment ion calculator (FRIOC) that allows us to predict fragment ions of linear polyamine derivatives. With three metabolites from the venom of the spider Agelenopsis aperta, it was demonstrated how the new website can support the structural elucidation of acylpolyamines using their MS/MS spectra.

2.
ACS Chem Neurosci ; 11(11): 1573-1596, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32343555

ABSTRACT

The South American social spider Parawixia bistriata produces a venom containing complex organic compounds with intriguing biological activities. The crude venom leads to paralysis in termites and stimulates l-glutamate uptake and inhibits GABA uptake in rat brain synaptosomes. Glutamate is the major neurotransmitter at the insect neuromuscular junction and at the mammalian central nervous system, suggesting a modulation of the glutamatergic system by the venom. Parawixin1, 2, and 10 (Pwx1, 2 and 10) are HPLC fractions that demonstrate this bioactivity. Pwx1 stimulates l-glutamate uptake through the main transporter in the brain, EAAT2, and is neuroprotective in in vivo glaucoma models. Pxw2 inhibits GABA and glycine uptake in synaptosomes and inhibits seizures and neurodegeneration, and Pwx10 increases l-glutamate uptake in synaptosomes and is neuroprotective and anticonvulsant, shown in in vivo epilepsy models. Herein, we investigated the low molecular mass compounds in this venom and have found over 20 small compounds and 36 unique acylpolyamines with and without amino acid linkers. The active substances in fractions Pwx1 and Pwx2 require further investigation. We elucidated and confirmed the structure of the active acylpolyamine in Pwx10. Both fraction Pwx10 and the synthesized component enhance the activity of transporters EAAT1 and EAAT2, and, importantly, offer in vitro neuroprotection against excitotoxicity in primary cultures. These data suggest that compounds with this mechanism could be developed into therapies for disorders in which l-glutamate excitotoxicity is involved.


Subject(s)
Spider Venoms , Animals , Anticonvulsants/therapeutic use , Excitatory Amino Acid Transporter 2 , Glutamic Acid , Neuroprotection , Rats , Synaptosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...