Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 280(5367): 1221-4, 1998 May 22.
Article in English | MEDLINE | ID: mdl-9596566

ABSTRACT

Near the Mantle Electromagnetic and Tomography (MELT) Experiment, seamounts form and off-axis lava flows occur in a zone that extends farther to the west of the East Pacific Rise than to the east, indicating a broad, asymmetric region of melt production. More seamounts, slower subsidence, and less dense mantle on the western flank suggest transport of hotter mantle toward the axis from the west. Variations in axial ridge shape, axial magma chamber continuity, off-axis volcanism, and apparent mantle density indicate that upwelling is probably faster and more melt is produced beneath 17 degrees15'S than beneath 15 degrees55'S. Recent volcanism occurs above mantle with the lowest seismic velocities.

2.
Science ; 280(5367): 1227-9, 1998 May 22.
Article in English | MEDLINE | ID: mdl-9596568

ABSTRACT

Waveform inversions of seismograms recorded at the Mantle Electromagnetic and Tomography (MELT) Experiment ocean bottom seismometer array from regional events with paths following the East Pacific Rise (EPR) require that low shear velocities (<3.7 km/s) extend to depths of more than 100 km below the rise axis. Velocities increase with average crustal age along ray paths. The reconciliation of Love and Rayleigh wave data requires that shear flow has aligned melt pockets or olivine crystals, creating an anisotropic uppermost mantle.

3.
Science ; 280(5367): 1235-8, 1998 May 22.
Article in English | MEDLINE | ID: mdl-9596571

ABSTRACT

The phase velocities of Rayleigh waves increase more rapidly with distance from the East Pacific Rise (EPR) axis than is predicted by models of conductive cooling of the lithosphere. Low velocities near the axis are probably caused by partial melt at depths of 20 to 70 kilometers in a zone several hundred kilometers wide. The lowest velocities are offset to the west of the EPR. Wave propagation is anisotropic; the fast direction is approximately perpendicular to the ridge, parallel to the spreading direction. Anisotropy increases from a minimum near the axis to 3 percent or more on the flanks.

SELECTION OF CITATIONS
SEARCH DETAIL
...