Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Radiol ; 46(8): 1199-208, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26952101

ABSTRACT

BACKGROUND: Despite the medical benefits of CT, there are concerns about increased cancer risks following CT scans in childhood. OBJECTIVE: To assess Australian temporal trends in pediatric CT scans funded through Medicare over the period 1985 to 2005, as well as changes in the types of CT scanners used. MATERIALS AND METHODS: We studied de-identified electronic records of Medicare-funded services, including CT scans, that were available for children and adults younger than 20 years between 1985 and 2005. We assessed temporal trends using CT imaging rates by age, gender and anatomical region. Regulators provided CT scanner registration lists to identify new models installed in Australia and to date the introduction of new technologies. RESULTS: Between 1985 and 2005, 896,306 Medicare-funded CT services were performed on 688,260 individuals younger than 20 years. The imaging rate more than doubled during that time period. There were more than 1,000 CT scanners on registration lists during the study period. There were both a sharp increase in the availability of helical scanning capabilities from 1994 and significant growth in multi-detector CT scanners from 2000. CONCLUSION: Significant increases in the rate of pediatric CT scanning have occurred in Australia. This rate has stabilized since 2000, possibly a result of better understanding of cancer risks.


Subject(s)
Pediatrics/methods , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/statistics & numerical data , Adolescent , Adult , Age Distribution , Australia , Child , Child, Preschool , Female , Humans , Male , Medicare , Sex Distribution , United States , Young Adult
2.
BMJ ; 346: f2360, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23694687

ABSTRACT

OBJECTIVE: To assess the cancer risk in children and adolescents following exposure to low dose ionising radiation from diagnostic computed tomography (CT) scans. DESIGN: Population based, cohort, data linkage study in Australia. COHORT MEMBERS: 10.9 million people identified from Australian Medicare records, aged 0-19 years on 1 January 1985 or born between 1 January 1985 and 31 December 2005; all exposures to CT scans funded by Medicare during 1985-2005 were identified for this cohort. Cancers diagnosed in cohort members up to 31 December 2007 were obtained through linkage to national cancer records. MAIN OUTCOME: Cancer incidence rates in individuals exposed to a CT scan more than one year before any cancer diagnosis, compared with cancer incidence rates in unexposed individuals. RESULTS: 60,674 cancers were recorded, including 3150 in 680,211 people exposed to a CT scan at least one year before any cancer diagnosis. The mean duration of follow-up after exposure was 9.5 years. Overall cancer incidence was 24% greater for exposed than for unexposed people, after accounting for age, sex, and year of birth (incidence rate ratio (IRR) 1.24 (95% confidence interval 1.20 to 1.29); P<0.001). We saw a dose-response relation, and the IRR increased by 0.16 (0.13 to 0.19) for each additional CT scan. The IRR was greater after exposure at younger ages (P<0.001 for trend). At 1-4, 5-9, 10-14, and 15 or more years since first exposure, IRRs were 1.35 (1.25 to 1.45), 1.25 (1.17 to 1.34), 1.14 (1.06 to 1.22), and 1.24 (1.14 to 1.34), respectively. The IRR increased significantly for many types of solid cancer (digestive organs, melanoma, soft tissue, female genital, urinary tract, brain, and thyroid); leukaemia, myelodysplasia, and some other lymphoid cancers. There was an excess of 608 cancers in people exposed to CT scans (147 brain, 356 other solid, 48 leukaemia or myelodysplasia, and 57 other lymphoid). The absolute excess incidence rate for all cancers combined was 9.38 per 100,000 person years at risk, as of 31 December 2007. The average effective radiation dose per scan was estimated as 4.5 mSv. CONCLUSIONS: The increased incidence of cancer after CT scan exposure in this cohort was mostly due to irradiation. Because the cancer excess was still continuing at the end of follow-up, the eventual lifetime risk from CT scans cannot yet be determined. Radiation doses from contemporary CT scans are likely to be lower than those in 1985-2005, but some increase in cancer risk is still likely from current scans. Future CT scans should be limited to situations where there is a definite clinical indication, with every scan optimised to provide a diagnostic CT image at the lowest possible radiation dose.


Subject(s)
Neoplasms, Radiation-Induced/epidemiology , Tomography, X-Ray Computed/adverse effects , Adolescent , Age Distribution , Australia/epidemiology , Child , Child, Preschool , Epidemiologic Methods , Female , Humans , Infant , Male , Radiation Dosage , Sex Distribution , Socioeconomic Factors , Time Factors , Tomography, X-Ray Computed/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...