Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Vet Sci ; 140: 109-116, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34419895

ABSTRACT

Coccidiosis is a disease caused by Eimeria, which represents the first parasitic disease in poultry farming. Among them, E. tenella is a virulent species which specifically colonizes the caecum. The inflammatory response to infection is associated to numerous host proteases including cysteine cathepsins that can be deleterious for tissue and innate immunity integrity. Here, germ-free and conventional chickens were used as models to find out whether the microbiota could modify the intestinal expression of host cysteine cathepsins during coccidiosis. The basal caecal peptidase activity primarily relies on host proteases rather than proteases from the commensal flora. While mRNA levels of E. tenella cathepsins B and L remained unchanged in germ-free and conventional broilers, an overall increase in endopeptidase activity of cysteine cathepsins was found in E. tenella-infected caeca in both experimental models (P < 0.005). A significant decrease in avian cystatin C transcription was also observed in infected conventional, but not in infected germ-free broilers. Despite an unchanged mRNA level of avian cathepsin L (CatL), its protein expression raised following infection, in parallel with an increased transcription of antimicrobial ß-defensins (AvBD1, AvBD2, AvBD4, AvBD6, and AvBD7). Taken together, data support that host CatL is post-translationally upregulated during E. tenella infection, and thus may be involved in the alteration of the gut proteolytic balance. Furthermore, CatL may participate to inflammation occurring during coccidiosis through its known ability to proteolytically inactivates up-regulated avian ß-defensins that are key molecules of innate immunity.


Subject(s)
Coccidiosis , Eimeria tenella , Poultry Diseases , Animals , Cathepsin L/genetics , Chickens , Coccidiosis/veterinary , Up-Regulation
2.
Front Cell Infect Microbiol ; 10: 632556, 2020.
Article in English | MEDLINE | ID: mdl-33614532

ABSTRACT

Coccidiosis is a widespread intestinal disease of poultry caused by a parasite of the genus Eimeria. Eimeria tenella, is one of the most virulent species that specifically colonizes the caeca, an organ which harbors a rich and complex microbiota. Our objective was to study the impact of the intestinal microbiota on parasite infection and development using an original model of germ-free broilers. We observed that germ-free chickens presented significantly much lower load of oocysts in caecal contents than conventional chickens. This decrease in parasite load was measurable in caecal tissue by RT-qPCR at early time points. Histological analysis revealed the presence of much less first (day 2pi) and second generation schizonts (day 3.5pi) in germ-free chickens than conventional chickens. Indeed, at day 3.5pi, second generation schizonts were respectively immature only in germ-free chickens suggesting a lengthening of the asexual phase of the parasite in the absence of microbiota. Accordingly to the consequence of this lengthening, a delay in specific gamete gene expressions, and a reduction of gamete detection by histological analysis in caeca of germ-free chickens were observed. These differences in parasite load might result from an initial reduction of the excystation efficiency of the parasite in the gut of germ-free chickens. However, as bile salts involved in the excystation step led to an even higher excystation efficiency in germ-free compared to conventional chickens, this result could not explain the difference in parasite load. Interestingly, when we shunted the excystation step in vivo by infecting chickens with sporozoites using the cloacal route of inoculation, parasite invasion was similar in germ-free and in conventional chickens but still resulted in significantly lower parasite load in germ-free chickens at day 7pi. Overall, these data highlighted that the absence of intestinal microbiota alters E. tenella replication. Strategies to modulate the microbiota and/or its metabolites could therefore be an alternative approach to limit the negative impact of coccidiosis in poultry.


Subject(s)
Eimeria tenella , Gastrointestinal Microbiome , Parasites , Poultry Diseases , Animals , Chickens
3.
J Infect Dis ; 219(6): 925-935, 2019 02 23.
Article in English | MEDLINE | ID: mdl-30203075

ABSTRACT

Understanding the protective immune response to Cryptosporidium parvum infection is of critical importance to reduce the widespread impact caused by this disease in young individuals. Here, we analyzed the various subsets of CD103+ and CD103- intestinal dendritic cells (DCs) of wild-type and Batf3-/- neonatal mice at homoeostasis and investigated their role during infection. Neonatal Batf3-/- mice had a low CD103+/CD103- DC ratio, resulting in higher susceptibility to the acute phase of the infection and they could not cure the infection. Early during infection, CD103- DCs of Batf3-/- neonates had a lower ability to produce interleukin-12 than their wild-type littermates and lower levels of interferon-gamma mRNA were detected in the infected mucosa. Amplification of CD103+ DCs in Batf3-/- neonates prior to infectious challenge reduced their susceptibility to infection. CD103+ DCs thus outperform CD103- DCs in controlling C. parvum infections and represent a primary target of host-directed immunotherapies dedicated to neonates.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , Cryptosporidiosis/immunology , Dendritic Cells/immunology , Intestines/immunology , Animals , Animals, Newborn , Antigens, CD/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Cryptosporidiosis/parasitology , Cryptosporidiosis/pathology , Cryptosporidium parvum/immunology , Dendritic Cells/parasitology , Interferon-gamma/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Intestines/cytology , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...