Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Oncol ; 14: 1418951, 2024.
Article in English | MEDLINE | ID: mdl-39011477

ABSTRACT

Introduction: Diffuse pleural mesothelioma (DPM) of the pleura is a highly aggressive and treatment-resistant cancer linked to asbestos exposure. Despite multimodal treatment, the prognosis for DPM patients remains very poor, with an average survival of 2 years from diagnosis. Cisplatin, a platinum-based chemotherapy drug, is commonly used in the treatment of DPM. However, the development of resistance to cisplatin significantly limits its effectiveness, highlighting the urgent need for alternative therapeutic strategies. New selective inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) have shown promise in various malignancies by inhibiting cell cycle progression and suppressing tumor growth. Recent studies have indicated the potential of abemaciclib for DPM therapy, and a phase II clinical trial has shown preliminary encouraging results. Methods: Here, we tested abemaciclib, palbociclib, and ribociclib on a panel of DPM cell lines and non-tumor mesothelial(MET-5A) cells. Results: Specifically, we focused on abemaciclib, which was the mosteffective cytotoxic agent on all the DPM cell lines tested. Abemaciclib reduced DPM cell viability, clonogenic potential, and ability to grow as three-dimensional (3D) spheroids. In addition, abemaciclib induced prolonged effects, thereby impairing second-generation sphere formation and inducing G0/G1 arrest and apoptosis/ necrosis. Interestingly, single silencing of RB family members did not impair cell response to abemaciclib, suggesting that they likely complement each other in triggering abemaciclib's cytostatic effect. Interestingly, abemaciclib reduced the phosphorylation of AKT, which is hyperactive in DPM and synergized with the pharmacological AKT inhibitor (AKTi VIII). Abemaciclib also synergized with cisplatin and reduced the viability of DPM cells with acquired resistance to cisplatin. Discussion: Overall, our results suggest that CDK4/6 inhibitors alone or in combination with standard of care should be further explored for DPM therapy.

2.
Oncogene ; 43(17): 1263-1273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38433256

ABSTRACT

DNA double-strand breaks (DSBs) contribute to genome instability, a key feature of cancer. DSBs are mainly repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). We investigated the role of an isoform of the multifunctional cyclin-dependent kinase 9, CDK9-55, in DNA repair, by generating CDK9-55-knockout HeLa clones (through CRISPR-Cas9), which showed potential HR dysfunction. A phosphoproteomic screening in these clones treated with camptothecin revealed that CDC23 (cell division cycle 23), a component of the E3-ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome), is a new substrate of CDK9-55, with S588 being its putative phosphorylation site. Mutated non-phosphorylatable CDC23(S588A) affected the repair pathway choice by impairing HR and favouring error-prone NHEJ. This CDK9 role should be considered when designing CDK-inhibitor-based cancer therapies.

3.
Front Oncol ; 13: 1117262, 2023.
Article in English | MEDLINE | ID: mdl-37409248

ABSTRACT

Introduction: DNA double-strand breaks are the most toxic lesions repaired through the non-homologous and joining (NHEJ) or the homologous recombination (HR), which is dependent on the generation of single-strand tails, by the DNA end resection mechanism. The resolution of the HR intermediates leads to error-free repair (Gene Conversion) or the mutagenic pathways (Single Strand Annealing and Alternative End-Joining); the regulation of processes leading to the resolution of the HR intermediates is not fully understood. Methods: Here, we used a hydrophilic extract of a new tomato genotype (named DHO) in order to modulate the Camptothecin (CPT) DNA damage response. Results: We demonstrated increased phosphorylation of Replication Protein A 32 Serine 4/8 (RPA32 S4/8) protein in HeLa cells treated with the CPT in combination with DHO extract with respect to CPT alone. Moreover, we pointed out a change in HR intermediates resolution from Gene Conversion to Single Strand Annealing through the modified DNA repair protein RAD52 homolog (RAD52), DNA excision repair protein ERCC-1 (ERCC1) chromatin loading in response to DHO extract, and CPT co-treatment, with respect to the vehicle. Finally, we showed an increased sensitivity of HeLa cell lines to DHO extract and CPT co-treatment suggesting a possible mechanism for increasing the efficiency of cancer therapy. Discussion: We described the potential role of DHO extract in the modulation of DNA repair, in response to Camptothecin treatment (CPT), favoring an increased sensitivity of HeLa cell lines to topoisomerase inhibitor therapy.

4.
Viruses ; 13(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34960727

ABSTRACT

Malignant mesothelioma (MM) is an aggressive asbestos-related cancer, against which no curative modalities exist. Oncolytic virotherapy is a promising therapeutic approach, for which MM is an ideal candidate; indeed, the pleural location provides direct access for the intra-tumoral injection of oncolytic viruses (OVs). Some non-human OVs offer advantages over human OVs, including the non-pathogenicity in humans and the absence of pre-existing immunity. We previously showed that caprine herpesvirus 1 (CpHV-1), a non-pathogenic virus for humans, can kill different human cancer cell lines. Here, we assessed CpHV-1 effects on MM (NCI-H28, MSTO, NCI-H2052) and non-tumor mesothelial (MET-5A) cells. We found that CpHV-1 reduced cell viability and clonogenic potential in all MM cell lines without affecting non-tumor cells, in which, indeed, we did not detect intracellular viral DNA after treatment. In particular, CpHV-1 induced MM cell apoptosis and accumulation in G0/G1 or S cell cycle phases. Moreover, CpHV-1 strongly synergized with cisplatin, the drug currently used in MM chemotherapy, and this agent combination did not affect normal mesothelial cells. Although further studies are required to elucidate the mechanisms underlying the selective CpHV-1 action on MM cells, our data suggest that the CpHV-1-cisplatin combination could be a feasible strategy against MM.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Cisplatin/pharmacology , Mesothelioma, Malignant/therapy , Oncolytic Virotherapy , Oncolytic Viruses/physiology , Varicellovirus/physiology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Combined Modality Therapy , Humans , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/physiopathology , Mesothelioma, Malignant/virology , Oncolytic Viruses/genetics , Varicellovirus/genetics
5.
Biomed Pharmacother ; 134: 111139, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33360155

ABSTRACT

Breast and ovarian cancers are the leading and fifth reason for tumor death among females, respectively. Recently, many studies demonstrated antiproliferative activities of natural aliments in cancer. In this study, we investigated the antitumor potential of Olive Leaf Extract (OLE) in triple-negative breast and ovarian cancer cells. A HPLC/DAD analysis on OLE has been performed to assess the total polyphenolics and other secondary metabolites content. HCEpiC, MDA-MB-231, and OVCAR-3 cell lines were used. MTS, Cytofluorimetric, Western Blot analysis were performed to analyze cell viability, cell proliferation, apoptosis, and oxidative stress. Fluorimetric and IncuCyte® analyses were carried out to evaluate apoptosis and mitochondrial function. We confirmed that OLE, containing a quantity of oleuropein of 87 % of the total extract, shows anti-proliferative and pro-apoptotic activity on MDA-MB-231 cells. For the first time, our results indicate that OLE inhibits OVCAR-3 cell viability inducing cell cycle arrest, and it also increases apoptotic cell death up-regulating the protein level of cleaved-PARP and caspase 9. Moreover, our data show that OLE treatment causes a significant decrease in mitochondrial functionality, paralleled by a reduction of mitochondrial membrane potential. Interestingly, OLE increased the level of intracellular and mitochondrial reactive oxygen species (ROS) together with a decreased activity of ROS scavenging enzymes, confirming oxidative stress in both models. Our data demonstrate that mitochondrial ROS generation represented the primary mechanism of OLE antitumor activity, as pretreatment with antioxidant N-acetylcysteine prevented OLE-induced cell cycle arrest and apoptosis.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Mitochondria/drug effects , Olea , Ovarian Neoplasms/drug therapy , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Leaves , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Olea/chemistry , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Signal Transduction , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
6.
Int J Mol Sci ; 21(19)2020 Oct 04.
Article in English | MEDLINE | ID: mdl-33020398

ABSTRACT

Malignant mesothelioma (MM) is a very aggressive asbestos-related cancer, for which no therapy proves to be effective. We have recently shown that the oncolytic adenovirus dl922-947 had antitumor effects in MM cell lines and murine xenografts. Previous studies demonstrated that dl922-947-induced host cell cycle checkpoint deregulation and consequent DNA lesions associated with the virus efficacy. However, the cellular DNA damage response (DDR) can counteract this virus action. Therefore, we assessed whether AZD1775, an inhibitor of the G2/M DNA damage checkpoint kinase WEE1, could enhance MM cell sensitivity to dl922-947. Through cell viability assays, we found that AZD1775 synergized with dl922-947 selectively in MM cell lines and increased dl922-947-induced cell death, which showed hallmarks of apoptosis (annexinV-positivity, caspase-dependency, BCL-XL decrease, chromatin condensation). Predictably, dl922-947 and/or AZD1775 activated the DDR, as indicated by increased levels of three main DDR players: phosphorylated histone H2AX (γ-H2AX), phospho-replication protein A (RPA)32, phospho-checkpoint kinase 1 (CHK1). Dl922-947 also increased inactive Tyr-15-phosphorylated cyclin-dependent kinase 1 (CDK1), a key WEE1 substrate, which is indicative of G2/M checkpoint activation. This increase in phospho-CDK1 was effectively suppressed by AZD1775, thus suggesting that this compound could, indeed, abrogate the dl922-947-induced DNA damage checkpoint in MM cells. Overall, our data suggest that the dl922-947-AZD1775 combination could be a feasible strategy against MM.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cell Survival/drug effects , Mesothelioma, Malignant/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidinones/pharmacology , Adenoviridae/genetics , Apoptosis/drug effects , Asbestos/toxicity , Cell Cycle Proteins/genetics , Cell Cycle Proteins/pharmacology , Cell Line, Tumor , DNA Damage/drug effects , Humans , Mesothelioma, Malignant/chemically induced , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/virology , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Phosphorylation/drug effects , Protein Kinase Inhibitors , Protein-Tyrosine Kinases/genetics
7.
Cell Death Dis ; 11(10): 867, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33067416

ABSTRACT

Author Francesca Pentimalli was incorrectly associated with Histopathological Unit, IRCCS-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy. The author's actual affiliation is Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Napoli, Italy.

8.
Cell Death Dis ; 11(9): 748, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32929059

ABSTRACT

Malignant pleural mesothelioma (MPM) is an aggressive cancer, related to asbestos exposure, which has a dismal prognosis. MPM diagnosis is late and often challenging, suggesting the need to identify more reliable molecular biomarkers. Here, we set out to identify differentially expressed miRNAs in epithelioid, biphasic, and sarcomatoid MPMs versus normal mesothelium and explored specific miRNA contribution to mesothelial tumorigenesis. We screened an LNA™-based miRNA-microrray with 14 formalin-fixed paraffin-embedded (FFPE) MPMs and 6 normal controls. Through real-time qRT-PCR we extended the analysis of a miRNA subset and further investigated miR-320a role through state-of-the-art techniques. We identified 16 upregulated and 32 downregulated miRNAs in MPMs versus normal tissue, including the previously identified potential biomarkers miR-21, miR-126, miR-143, miR-145. We showed in an extended series that miR-145, miR-10b, and miR-320a levels can discriminate tumor versus controls with high specificity and sensitivity. We focused on miR-320a because other family members were found downregulated in MPMs. However, stable miR-320a ectopic expression induced higher proliferation and migration ability, whereas miR-320a silencing reduced these processes, not supporting a classic tumor-suppressor role in MPM cell lines. Among putative targets, we found that miR-320a binds the 3'-UTR of the immune inhibitory receptor ligand PDL1 and, consistently, miR-320a modulation affects PDL1 levels in MPM cells. Finally, we showed that p53 over-expression induces the upregulation of miR-320a, along with miR-200a and miR-34a, both known to target PDL1, and reduces PDL1 levels in MPM cells. Our data suggest that PDL1 expression might be due to a defective p53-regulated miRNA response, which could contribute to MPM immune evasion or tumorigenesis through tumor-intrinsic roles.


Subject(s)
B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Mesothelioma, Malignant/metabolism , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Down-Regulation , HEK293 Cells , Humans , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/pathology , MicroRNAs/genetics , Transfection , Tumor Suppressor Protein p53/genetics
9.
Cells ; 9(9)2020 08 25.
Article in English | MEDLINE | ID: mdl-32854442

ABSTRACT

Tumor-infiltrating T cell rescue by programmed cell death receptor-1 (PD-1)/PD-1 ligand-1 (PD-L1) immune checkpoint blockade is a recommended treatment for malignant diseases, including metastatic non-small-cell lung cancer (mNSCLC), malignant melanoma (MM), head and neck, kidney, and urothelial cancer. Monoclonal antibodies (mAbs) against either PD-1 or PD-L1 are active agents for these patients; however, their use may be complicated by unpredictable immune-related adverse events (irAEs), including immune-related pneumonitis (IRP). We carried out a retrospective multi-institutional statistical analysis to investigate clinical and biological parameters correlated with IRP rate on a cohort of 256 patients who received real-world treatment with PD-1/PD-L1 blocking mAbs. An independent radiological review board detected IRP in 29 patients. We did not find statistical IRP rate correlation with gender, tumor type, specific PD-1 or PD-L1 blocking mAbs, radiation therapy, inflammatory profile, or different irAEs. A higher IRP risk was detected only in mNSCLC patients who received metronomic chemotherapy +/- bevacizumab compared with other treatments prior PD-1/PD-L1 blockade. Moreover, we detected a strong correlation among the IRP rate and germinal expression of HLA-B*35 and DRB1*11, alleles associated to autoimmune diseases. Our findings may have relevant implications in predicting the IRP rate in mNSCLC patients receiving PD-1/PD-L1 blockade and need to be validated on a larger patient series.


Subject(s)
Genes, MHC Class I/genetics , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/methods , Pneumonia/chemically induced , Female , Humans , Male , Middle Aged , Retrospective Studies
10.
Cancers (Basel) ; 12(7)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32664483

ABSTRACT

Abstract: Malignant mesothelioma (MM) is a deadly tumor mainly caused by exposure to asbestos. Unfortunately, no current treatment is able to change significantly the natural history of the disease, which has a poor prognosis in the majority of patients. The non-receptor tyrosine kinase SRC and other SRC family kinase (SFK) members are frequently hyperactivated in many cancer types, including MM. Several works have indeed suggested that SFKs underlie MM cell proliferation, survival, motility, and invasion, overall affecting multiple oncogenic pathways. Consistently, SFK inhibitors effectively counteracted MM cancerous features at the preclinical level. Dasatinib, a multi-kinase inhibitor targeting SFKs, was also assessed in clinical trials either as second-line treatment for patients with unresectable MM or, more recently, as a neoadjuvant agent in patients with resectable MM. Here, we provide an overview of the molecular mechanisms implicating SFKs in MM progression and discuss possible strategies for a more successful clinical application of SFK inhibitors. Our aim is to stimulate discussion and further consideration of these agents in better designed preclinical and clinical studies to make the most of another class of powerful antitumoral drugs, which too often are lost in translation when applied to MM.

12.
J Cell Physiol ; 235(6): 5213-5222, 2020 06.
Article in English | MEDLINE | ID: mdl-31838757

ABSTRACT

In Italy, in the eastern area of the Campania region, the illegal dumping and burning of waste have been documented, which could potentially affect the local population's health. In particular, toxic waste exposure has been suggested to associate with increased cancer development/mortality in these areas, although a causal link has not yet been established. In this pilot study, we evaluated blood levels of toxic heavy metals and persistent organic pollutants (POPs) in 95 patients with different cancer types residing in this area and in 27 healthy individuals. While we did not find any significant correlation between the blood levels of POPs and the provenance of the patients, we did observe high blood concentrations of heavy metals in some municipalities, including Giugliano, where many illegal waste disposal sites have previously been documented. Our results showed that patients with different cancer types from Giugliano had higher blood levels of heavy metals than healthy controls. Despite the obvious limitations of this exploratory study, our preliminary observations encourage further research assessing the possible association between exposure to hazardous waste, increased blood metals, and increased risk of cancer.


Subject(s)
Early Detection of Cancer , Metals, Heavy/blood , Neoplasms/blood , Persistent Organic Pollutants/blood , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Italy/epidemiology , Male , Metals, Heavy/toxicity , Middle Aged , Neoplasms/chemically induced , Neoplasms/pathology , Persistent Organic Pollutants/toxicity , Young Adult
13.
Front Oncol ; 9: 564, 2019.
Article in English | MEDLINE | ID: mdl-31355131

ABSTRACT

Background: Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure that urgently requires effective therapeutic strategies. Current treatments are unable to increase significantly patient survival, which is often limited to <1 year from diagnosis. Virotherapy, based on the use of oncolytic viruses that exert anti-cancer effects by direct cell lysis and through the induction of anti-tumor immune response, represents an alternative therapeutic option for rare tumors with limited life expectancy. In this study, we propose the use of the adenovirus dl922-947, engineered to allow selective replication in cancer cells, to counteract MPM. Methods: We performed a thorough preclinical assessment of dl922-947 effects in a set of MPM cell lines and xenografts. Cytotoxicity of dl922-947 alone and in combination assays was evaluated by sulforhodamine B assay. Cell cycle, calreticulin expression, and high mobility group box protein 1 (HMGB1) secretion were determined by flow cytometry, whereas ATP content was determined by a luminescence-based bioassay. The modulation of angiogenic factors in MPM-infected cells was evaluated through ELISA. Results: We found that dl922-947 infection exhibits cytotoxic effects in MPM cell lines, affecting cell viability, cell cycle progression, and regulating main hallmarks of immunogenic cell death inducing calreticulin surface exposure, HMGB1 and ATP release. Our results also suggest that dl922-947 may affect angiogenic signals by regulation of VEGF-A and IL-8 secretion. Furthermore, dl922-947 shows anti-tumor efficacy in murine xenograft models reducing tumor growth and enhancing survival. Finally, the combination with cisplatin potentiated the cytotoxic effect of dl922-947. Conclusions: Overall our data identify virotherapy, based on the use of dl922-947, as a new possible therapeutic strategy against MPM, which could be used alone, in combination with standard chemotherapy drugs, as shown here, or other approaches also aimed at enhancing the antitumoral immune response elicited by the virus.

14.
Int J Oncol ; 54(6): 2189-2199, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31081046

ABSTRACT

Glioblastoma (GB) is the most common and aggressive malignant tumor of the central nervous system. Despite current intensive treatment regimens, consisting of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ) chemotherapy, the prognosis of patients with GB remains extremely poor. Considering that alterations of the p53 tumor suppressor pathway have a key role in both GB development and resistance to TMZ treatment, the re­activation of p53 could be an effective therapeutic approach against GB. In this study, we challenged p53 wild­type and mutant GB cell lines with RITA, a molecule originally identified for its ability to restore p53 functions, although it was subsequently shown to act also through p53­independent mechanisms. We examined the effects of RITA on GB cell viability, through MTS and clonogenic assays, and analyzed cell death through cytoflourimetric analyses. In all the tested GB cell lines, RITA significantly reduced the cell proliferative and clonogenic potential and induced cell accumulation in the S and/or G2/M cell cycle phases and massive p53­dependent apoptosis. Moreover, RITA was more effective than the well­known p53 re­activating molecule, nutlin­3, and did not affect the viability of normal astrocytes. In addition, RITA decreased survivin expression and induced DNA damage, two mechanisms that likely contribute to its anti­tumor effects. Furthermore, RITA synergized with TMZ and was able to decrease the expression of MGMT, which is a crucial player in TMZ resistance. Thus, although further studies are warranted to clarify the exact mechanisms of action of RITA, the data of this study suggest the potential of such an approach for GB therapy, which may also help to overcome resistance to TMZ.


Subject(s)
Brain Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Furans/pharmacology , Glioblastoma/metabolism , Temozolomide/pharmacology , Tumor Suppressor Protein p53/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Imidazoles/pharmacology , Mutation , Piperazines/pharmacology , Protein Binding/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics
15.
J Cell Physiol ; 234(12): 23268-23278, 2019 12.
Article in English | MEDLINE | ID: mdl-31140616

ABSTRACT

The major cause of end-stage renal disease is the diabetic nephropathy. Oxidative stress contributes to the development of type II diabetes mellitus (T2DM). In this study we have evaluated the effect of a diet with a new standardized of red orange and lemon extract (RLE) rich in anthocyanins (ANT) in the progression of the kidney disease on Zucker diabetic fatty rats. Oxidative stress and renal function were analyzed. In diabetic rats, the RLE restored the blood glucose levels, body weight, and normalized the reactive oxygen species (ROS) total pathways. The kidney inflammation, in diabetic rats, has not shown significant change, showing that the oxidative stress rather than to inflammatory processes is a triggering factor in the renal complication associated with T2DM. Therefore, the administration of the RLE prevents this complication and this effect could be related to the inhibition of ROS production.


Subject(s)
Antioxidants/pharmacology , Diabetic Nephropathies/pathology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Animals , Anthocyanins/pharmacology , Citrus , Citrus sinensis , Color , Diabetes Mellitus, Experimental , Rats , Rats, Zucker
16.
Cancer Biol Ther ; 20(1): 42-51, 2019.
Article in English | MEDLINE | ID: mdl-30409104

ABSTRACT

Caprine Herpesvirus type 1 (CpHV-1) is a species-specific herpes virus able to induce apoptosis in several biological systems. In the present study we aimed to investigate the ability of CpHV-1 to reduce cells viability, to replicate and to cause cell death also in human cancer cell lines. We tested the CpHV-1 effects on HEL-299, Vero, MDA-MB-468, HeLa, U2OS, PC3, A549 and K562 neoplastic cell lines and on MDBK cells. Firstly, we evaluated the effect of CpHV-1 infection on cell viability by MTT assay and our data showed that CpHV-1 can induce a marked cytopathic effect (CPE) in most of cell lines tested, except for HEL-299, Vero and K562 cells. The reduction of cell viability was associated with a significant increase of viral production. We next investigated if CpHV-1 was able to induce cell death and so through western blotting analysis we evaluated cleaved caspase 3, LC3II and p62 protein levels after infection. Caspase 3 activation was detected in MDBK cells and, even if at different times p.i., also in MDA-MB-468, U2OS, and PC3 cell lines, while LC3II increase and concomitant p62 protein reduction were observed only in U2OS, and A549 cells, no significant alteration of these proteins was observed in the other cell lines tested. Finally, to confirm virus ability to trigger apoptosis we performed an Annexin-V apoptosis test after 24 h p.i. Although we need to further explore mechanisms underlying CpHV-1 treatment, this study could serve as the basis for the development of new treatment options aiming to fight several cancer types.


Subject(s)
Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Varicellovirus/immunology , Animals , Apoptosis/immunology , Autophagy/immunology , Cattle , Cell Line, Tumor , Cell Survival/immunology , Chlorocebus aethiops , Humans , Neoplasms/immunology , Toxicity Tests , Vero Cells
17.
J Cell Physiol ; 233(11): 8731-8739, 2018 11.
Article in English | MEDLINE | ID: mdl-29775204

ABSTRACT

Ochratoxin A (OTA), is a natural contaminant of the food chain worldwide involved in the development of different type of cancers in animals and humans. Several studies suggested that oxidative damage might contribute to increase the cytotoxicity and carcinogenicity capabilities of OTA. The aim of this study was to evaluate the possible protective effect of δ-tocotrienol (Delta), a natural form of vitamin E, against OTA-induced nephrotoxicity. Male Sprague-Dawley rats were treated with OTA and/or Delta by gavage for 14 days. Our results shown that OTA treatment induced the increase of reactive oxigen species production correlated to a strong reduction of Glomerular Filtration Rate (GFR) and absoluted fluid reabsorption (Jv) with conseguent significant increase in blood pressure. Consistent, we noted in the kidney of rats treated with OTA, an increase in malondialdheyde and dihydroethidium production and a reduction of the activity of the catalase, superoxide dismutase, and glutathione peroxidase. Conversly, in the rat group subjected to the concomitant treatment OTA plus Delta, we observed the restored effect, compared the OTA treatment group, on blood pressure, GFR, Jv, and all activities of renal antioxidant enzymes. Finally, as far as concern the tissue damage induced by OTA and measured evaluating fibronectin protein levels, we observed that in OTA plus Delta group this effect is not restored. Our findings releval that a mechanism underlying the renal toxicity induced by OTA is the oxidative stress and provide a new rationale to use a Delta in order to protect, at least in part, against OTA-induced nephrotoxicity.


Subject(s)
Antioxidants/administration & dosage , Kidney Diseases/drug therapy , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Vitamin E/analogs & derivatives , Animals , Catalase/drug effects , Glomerular Filtration Rate/drug effects , Glutathione/metabolism , Glutathione Peroxidase/genetics , Humans , Kidney/drug effects , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Ochratoxins/toxicity , Oxidation-Reduction/drug effects , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/genetics , Vitamin E/administration & dosage , Vitamin E/genetics
18.
Oncogene ; 37(27): 3657-3671, 2018 07.
Article in English | MEDLINE | ID: mdl-29606701

ABSTRACT

The retinoblastoma (RB) protein family includes RB1/p105, RBL1/p107, and RBL2/p130, which are key factors in cell-cycle regulation and stand at the crossroads of multiple pathways dictating cell fate decisions. The role of RB proteins in apoptosis is controversial because they can inhibit or promote apoptosis depending on the context, on the apoptotic stimuli and on their intrinsic status, impacting on the response to antitumoral treatments. Here we identified RBL2/p130 as a direct substrate of the AKT kinase, a key antiapoptotic factor hyperactive in multiple cancer types. We showed that RBL2/p130 and AKT1 physically interact and AKT phosphorylates RBL2/p130 Ser941, located in the pocket domain, but not when this residue is mutated into Ala. We found that pharmacological inhibition of AKT, through the highly selective AKT inhibitor VIII (AKTiVIII), impairs RBL2/p130 Ser941 phosphorylation and increases RBL2/p130 stability, mRNA expression and nuclear levels in both lung cancer and mesothelioma cell lines, mirroring the more extensively studied effects on the p27 cell-cycle inhibitor. Consistently, AKT inhibition reduced cell viability, induced cell accumulation in G0/G1, and triggered apoptosis, which proved to be largely dependent on RBL2/p130 itself, as shown upon RBL2/p130 silencing. AKT inhibition induced RBL2/p130-dependent apoptosis also in HEK-293 cells, in which re-expression of a short hairpin-resistant RBL2/p130 was able to rescue AKTiVIII-induced apoptosis upon RBL2/p130 silencing. Our data also showed that the combination of AKT and cyclin-dependent kinases (CDK) inhibitors, which converge on the re-activation of RBL2/p130 antitumoral potential, could be a promising anticancer strategy.


Subject(s)
Apoptosis/physiology , Lung Neoplasms/pathology , Mesothelioma/pathology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Retinoblastoma-Like Protein p130/metabolism , A549 Cells , Benzimidazoles/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival , HEK293 Cells , Humans , Lung Neoplasms/genetics , Mesothelioma/genetics , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/genetics , Quinoxalines/pharmacology , RNA, Messenger/biosynthesis , Retinoblastoma-Like Protein p130/genetics
19.
J Cell Physiol ; 233(2): 1266-1277, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28488765

ABSTRACT

Gastric cancer represents a diffuse and aggressive neoplasm, whose mortality index is among the highest in the world. Predisposing factors are E-cadherin mutations, Helicobacter pylori infection, and a diet rich in salted and smoked food, with a low intake of fresh fruits and vegetables. Here, we analyzed the effect of total lipophilic extracts of two Southern Italy tomato varieties, San Marzano and Corbarino, on an in vitro model of gastric cancer, YCC-1, YCC-2 and YCC-3 cell lines, characterized by different aggressiveness. Our results showed a possible role of these two varieties of tomatoes against typical neoplastic features. The treatment with tomato extracts affected cancer cell ability to grow both in adherence and in semisolid medium, reducing also cell migration ability. No toxic effects were observed on non-tumoral cells. We found, on gastric cancer cell lines, effects on both cell cycle progression and apoptosis modulation. The extent of antineoplastic effects, however, did not seem to correlate with the carotenoid content and antioxidant activity of the two tomato varieties. Our data indicate that San Marzano and Corbarino intake might be further considered as nutritional support not only in cancer prevention, but also for cancer patient diet.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Carotenoids/pharmacology , Solanum lycopersicum/chemistry , Stomach Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/isolation & purification , Apoptosis/drug effects , Carotenoids/isolation & purification , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Fruit/chemistry , Humans , Italy , Neoplasm Invasiveness , Phytotherapy , Plants, Medicinal , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Time Factors
20.
J Cell Physiol ; 233(5): 4338-4344, 2018 05.
Article in English | MEDLINE | ID: mdl-29150959

ABSTRACT

NONO is an RNA-binding protein involved in transcription, mRNA splicing, DNA repair, and checkpoint activation in response to UV radiation. NONO expression has been found altered in several tumor types, including prostate, colon, breast, melanoma, and in papillary renal carcinoma, in which an X chromosome inversion generates a NONO-TFE3 fusion protein. Upon such rearrangement, NONO loses its C-terminal domain. Through bioinformatics analysis, we identified a putative degron motif, known to be recognized by the Skp1-Cul1-F-box-protein (SCF) complex. Here, we evaluated how this domain could affect NONO protein biology. We showed that NONO interacts with the nuclear FBW7α isoform and its ubiquitination is regulated following modulation of the GSK3ß kinase. Mutation of T428A/T432A within the degron impaired polyubiquitination upon FBW7α and GSK3ß overexpression. Overall, our data suggest that NONO is likely subjected to proteasome-mediated degradation and add NONO to the list of proteins targeted by FBW7, which is itself often deregulated in cancer.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/genetics , Glycogen Synthase Kinase 3 beta/genetics , Neoplasms/genetics , Nuclear Matrix-Associated Proteins/genetics , Octamer Transcription Factors/genetics , RNA-Binding Proteins/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Chromosome Aberrations , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic/genetics , Humans , Nucleotide Motifs/genetics , Phosphorylation , SKP Cullin F-Box Protein Ligases/genetics , Ubiquitination/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...