Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Metab ; 74: 101750, 2023 08.
Article in English | MEDLINE | ID: mdl-37302544

ABSTRACT

OBJECTIVE: Unexplained changes in regulation of branched chain amino acids (BCAA) during diabetes therapy with metformin have been known for years. Here we have investigated mechanisms underlying this effect. METHODS: We used cellular approaches, including single gene/protein measurements, as well as systems-level proteomics. Findings were then cross-validated with electronic health records and other data from human material. RESULTS: In cell studies, we observed diminished uptake/incorporation of amino acids following metformin treatment of liver cells and cardiac myocytes. Supplementation of media with amino acids attenuated known effects of the drug, including on glucose production, providing a possible explanation for discrepancies between effective doses in vivo and in vitro observed in most studies. Data-Independent Acquisition proteomics identified that SNAT2, which mediates tertiary control of BCAA uptake, was the most strongly suppressed amino acid transporter in liver cells following metformin treatment. Other transporters were affected to a lesser extent. In humans, metformin attenuated increased risk of left ventricular hypertrophy due to the AA allele of KLF15, which is an inducer of BCAA catabolism. In plasma from a double-blind placebo-controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin caused selective accumulation of plasma BCAA and glutamine, consistent with the effects in cells. CONCLUSIONS: Metformin restricts tertiary control of BCAA cellular uptake. We conclude that modulation of amino acid homeostasis contributes to therapeutic actions of the drug.


Subject(s)
Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Amino Acids, Branched-Chain/metabolism , Amino Acids/metabolism , Glucose , Homeostasis
2.
Int J Mol Sci ; 22(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34445361

ABSTRACT

Inflammation promotes endothelial dysfunction, but the underlying mechanisms remain poorly defined in vivo. Using translational vascular function testing in myocardial infarction patients, a situation where inflammation is prevalent, and knock-out (KO) mouse models we demonstrate a role for mitogen-activated-protein-kinases (MAPKs) in endothelial dysfunction. Myocardial infarction significantly lowers mitogen and stress kinase 1/2 (MSK1/2) expression in peripheral blood mononuclear cells and diminished endothelial function. To further understand the role of MSK1/2 in vascular function we developed in vivo animal models to assess vascular responses to vasoactive drugs using laser Doppler imaging. Genetic deficiency of MSK1/2 in mice increased plasma levels of pro-inflammatory cytokines and promoted endothelial dysfunction, through attenuated production of nitric oxide (NO), which were further exacerbated by cholesterol feeding. MSK1/2 are activated by toll-like receptors through MyD88. MyD88 KO mice showed preserved endothelial function and reduced plasma cytokine expression, despite significant hypercholesterolemia. MSK1/2 kinases interact with MAPK-activated proteins 2/3 (MAPKAP2/3), which limit cytokine synthesis. Cholesterol-fed MAPKAP2/3 KO mice showed reduced plasma cytokine expression and preservation of endothelial function. MSK1/2 plays a significant role in the development of endothelial dysfunction and may provide a novel target for intervention to reduce vascular inflammation. Activation of MSK1/2 could reduce pro-inflammatory responses and preserve endothelial vasodilator function before development of significant vascular disease.


Subject(s)
Ribosomal Protein S6 Kinases, 90-kDa/physiology , Vascular Diseases/genetics , Adult , Aged , Animals , Case-Control Studies , Cells, Cultured , Cohort Studies , Endothelium, Vascular/physiopathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Signal Transduction/physiology , Vascular Diseases/physiopathology , Young Adult
3.
Redox Biol ; 14: 187-197, 2018 04.
Article in English | MEDLINE | ID: mdl-28942196

ABSTRACT

Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled.


Subject(s)
Electron Transport Complex I/metabolism , Energy Metabolism/drug effects , Metformin/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line, Tumor , Electron Transport Complex I/chemistry , Furans/pharmacology , Glucose/metabolism , Guanidine/analogs & derivatives , Guanidine/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction , Oxygen Consumption/drug effects , Phosphorylation/drug effects , Rats , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction/drug effects
4.
Circ Res ; 119(5): 652-65, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27418629

ABSTRACT

RATIONALE: The diabetes mellitus drug metformin is under investigation in cardiovascular disease, but the molecular mechanisms underlying possible benefits are poorly understood. OBJECTIVE: Here, we have studied anti-inflammatory effects of the drug and their relationship to antihyperglycemic properties. METHODS AND RESULTS: In primary hepatocytes from healthy animals, metformin and the IKKß (inhibitor of kappa B kinase) inhibitor BI605906 both inhibited tumor necrosis factor-α-dependent IκB degradation and expression of proinflammatory mediators interleukin-6, interleukin-1ß, and CXCL1/2 (C-X-C motif ligand 1/2). Metformin suppressed IKKα/ß activation, an effect that could be separated from some metabolic actions, in that BI605906 did not mimic effects of metformin on lipogenic gene expression, glucose production, and AMP-activated protein kinase activation. Equally AMP-activated protein kinase was not required either for mitochondrial suppression of IκB degradation. Consistent with discrete anti-inflammatory actions, in macrophages, metformin specifically blunted secretion of proinflammatory cytokines, without inhibiting M1/M2 differentiation or activation. In a large treatment naive diabetes mellitus population cohort, we observed differences in the systemic inflammation marker, neutrophil to lymphocyte ratio, after incident treatment with either metformin or sulfonylurea monotherapy. Compared with sulfonylurea exposure, metformin reduced the mean log-transformed neutrophil to lymphocyte ratio after 8 to 16 months by 0.09 U (95% confidence interval, 0.02-0.17; P=0.013) and increased the likelihood that neutrophil to lymphocyte ratio would be lower than baseline after 8 to 16 months (odds ratio, 1.83; 95% confidence interval, 1.22-2.75; P=0.00364). Following up these findings in a double-blind placebo controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin suppressed plasma cytokines including the aging-associated cytokine CCL11 (C-C motif chemokine ligand 11). CONCLUSION: We conclude that anti-inflammatory properties of metformin are exerted irrespective of diabetes mellitus status. This may accelerate investigation of drug utility in nondiabetic cardiovascular disease groups. CLINICAL TRIAL REGISTRATION: Name of the trial registry: TAYSIDE trial (Metformin in Insulin Resistant Left Ventricular [LV] Dysfunction). URL: https://www.clinicaltrials.gov. Unique identifier: NCT00473876.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Aged , Animals , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Cohort Studies , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Double-Blind Method , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Hypoglycemic Agents/pharmacology , Male , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Middle Aged , Piperidines/pharmacology , Retrospective Studies , Sulfonamides/pharmacology
5.
Biochim Biophys Acta ; 1862(8): 1412-22, 2016 08.
Article in English | MEDLINE | ID: mdl-27130437

ABSTRACT

Anti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mitochondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only drug tested that activated AMPK. Salicylate also reduced mTOR signalling, but this property was observed widely among the analogues. In a sub-panel of analogues, salicylate alone reduced promoter activity of the key gluconeogenic enzyme glucose 6-phosphatase and suppressed basal glucose production in mouse primary hepatocytes. Both salicylate and 2,6 dihydroxybenzoic acid suppressed TNFα-induced IκB degradation, and in genetic knockout experiments, we found that the effect of salicylate on IκB degradation was AMPK-independent. Previous data also identified AMPK-independent regulation of glucose but we found that direct inhibition of neither NF-κB nor mTOR signalling suppressed glucose production, suggesting that other factors besides these cell signalling pathways may need to be considered to account for this response to salicylate. We found, for example, that H4IIE cells were exquisitely sensitive to uncoupling with modest doses of salicylate, which occurred on a similar time course to another anti-hyperglycaemic uncoupling agent 2,4-dinitrophenol, while there was no discernible effect at all of two salicylate analogues which are not anti-hyperglycaemic. This finding supports much earlier literature suggesting that salicylates exert anti-hyperglycaemic effects at least in part through uncoupling.


Subject(s)
Hepatocytes/metabolism , Liver/metabolism , Salicylates , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Glucose-6-Phosphate/metabolism , Hep G2 Cells , Humans , NF-kappa B/metabolism , Rats , Salicylates/chemistry , Salicylates/pharmacology , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...