Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(42): 11034-11039, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28973910

ABSTRACT

Plants constantly undergo external mechanical loads such as wind or touch and respond to these stimuli by acclimating their growth processes. A fascinating feature of this mechanical-induced growth response is that it can occur rapidly and at long distance from the initial site of stimulation, suggesting the existence of a fast signal that propagates across the whole plant. The nature and origin of the signal is still not understood, but it has been recently suggested that it could be purely mechanical and originate from the coupling between the local deformation of the tissues (bending) and the water pressure in the plant vascular system. Here, we address the physical origin of this hydromechanical coupling using a biomimetic strategy. We designed soft artificial branches perforated with longitudinal liquid-filled channels that mimic the basic features of natural stems and branches. In response to bending, a strong overpressure is generated in the channels that varies quadratically with the bending curvature. A model based on a mechanism analogous to the ovalization of hollow tubes enables us to predict quantitatively this nonlinear poroelastic response and identify the key physical parameters that control the generation of the pressure pulse. Further experiments conducted on natural tree branches reveal the same phenomenology. Once rescaled by the model prediction, both the biomimetic and natural branches fall on the same master curve, enlightening the universality of our poroelastic mechanism for the generation of hydraulic signals in plants.


Subject(s)
Mechanotransduction, Cellular , Models, Biological , Trees/growth & development , Tropism , Water/physiology , Pinus sylvestris/physiology , Quercus/physiology
2.
Phys Biol ; 14(3): 035005, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28535150

ABSTRACT

The detection of gravity plays a fundamental role during the growth and evolution of plants. Although progress has been made in our understanding of the molecular, cellular and physical mechanisms involved in the gravity detection, a coherent scenario consistent with all the observations is still lacking. In this special issue article, we discuss recent experiments showing that the response to inclination of shoots is independent of the gravity intensity, meaning that the gravity sensor detects an inclination and not a force. This result questions some of the commonly accepted hypotheses and leads to propose a new 'position sensor hypothesis'. The implications of this new scenario are discussed in light of the different observations available in the literature.


Subject(s)
Gravity Sensing , Plant Shoots/physiology
3.
Phys Rev Lett ; 106(10): 108301, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21469838

ABSTRACT

We study how a shear band in a granular medium dramatically changes the mechanical behavior of the material further in the non sheared region. To this end, we carry out a microrheology experiment, where a constant force F is applied to a small rod immersed outside the shear band. In the absence of a shear band, a critical force F(c) is necessary to move the intruder. When a shear band exists, the intruder moves even for a force F less than the critical force F(c). We systematically study how the creep velocity V(creep) of the rod varies with F(c) - F and with the distance to the shear band, and show that the behavior can be described by an Eyring-like activated process.

4.
Phys Rev Lett ; 86(26 Pt 1): 5886-9, 2001 Jun 25.
Article in English | MEDLINE | ID: mdl-11415386

ABSTRACT

We present a new instability observed in rapid granular flows down rough inclined planes. For high inclinations and flow rates, the free surface of the flow experiences a regular deformation in the transverse direction. Measurements of the surface velocities imply that this instability is associated with the formation of longitudinal vortices in the granular flow. From the experimental observations, we propose a mechanism for the longitudinal vortex formation based on the concept of granular temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...