Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(2): 1424-33, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26710829

ABSTRACT

Improving graphene-based electrode fabrication processes and developing robust methods for its functionalization are two key research routes to develop new high-performance electrodes for electrochemical applications. Here, a self-organized three-dimensional (3D) graphene electrode processed by pulsed laser deposition with thermal annealing is reported. This substrate shows great performance in electron transfer kinetics regarding ferrocene redox probes in solution. A robust electrografting strategy for covalently attaching a redox probe onto these graphene electrodes is also reported. The modification protocol consists of a combination of diazonium salt electrografting and click chemistry. An alkyne-terminated phenyl ring is first electrografted onto the self-organized 3D graphene electrode by in situ electrochemical reduction of 4-ethynylphenyl diazonium. Then the ethynylphenyl-modified surface efficiently reacts with the redox probe bearing a terminal azide moiety (2-azidoethyl ferrocene) by means of Cu(I)-catalyzed alkyne-azide cycloaddition. Our modification strategy applied to 3D graphene electrodes was analyzed by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy (XPS). For XPS chemical surface analysis, special attention was paid to the distribution and chemical state of iron and nitrogen in order to highlight the functionalization of the graphene-based substrate by electrochemically grafting a ferrocene derivative. Dense grafting was observed, offering 4.9 × 10(-10) mol cm(-2) surface coverage and showing a stable signal over 22 days. The electrografting was performed in the form of multilayers, which offers higher ferrocene loading than a dense monolayer on a flat surface. This work opens highly promising perspectives for the development of self-organized 3D graphene electrodes with various sensing functionalities.

2.
Biosens Bioelectron ; 74: 830-5, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26232678

ABSTRACT

A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water.


Subject(s)
Benzhydryl Compounds/isolation & purification , Biosensing Techniques , Electrochemistry , Nanotubes, Carbon/chemistry , Phenols/isolation & purification , Benzhydryl Compounds/chemistry , Boron/chemistry , Diazonium Compounds , Enzymes, Immobilized/chemistry , Limit of Detection , Monophenol Monooxygenase/chemistry , Phenols/chemistry , Wastewater/chemistry
3.
Chem Commun (Camb) ; 51(21): 4458-61, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25679473

ABSTRACT

We report the first synthesis of a methylene blue (MB) phosphoramidite derivative suitable for DNA solid-phase synthesis. The electrochemical and optical properties of the resulting MB modified oligonucleotides were confirmed. This new molecule is an important breakthrough in the design of new probes labelled with MB.


Subject(s)
Methylene Blue/chemistry , Oligonucleotides/chemistry , Organophosphorus Compounds/chemistry , Electrochemical Techniques , Oligonucleotides/chemical synthesis , Solid-Phase Synthesis Techniques
4.
Chemistry ; 20(35): 11029-34, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25066901

ABSTRACT

Photosystem 1 (PS1) triggers the most energetic light-induced charge-separation step in nature and the in vivo electron-transfer rates approach 50 e(-) s(-1) PS1(-1). Photoelectrochemical devices based on this building block have to date underperformed with respect to their semiconductor counterparts or to natural photosynthesis in terms of electron-transfer rates. We present a rational design of a redox hydrogel film to contact PS1 to an electrode for photocurrent generation. We exploit the pH-dependent properties of a poly(vinyl)imidazole Os(bispyridine)2Cl polymer to tune the redox hydrogel film for maximum electron-transfer rates under optimal conditions for PS1 activity. The PS1-containing redox hydrogel film displays electron-transfer rates of up to 335±14 e(-) s(-1) PS1(-1), which considerably exceeds the rates observed in natural photosynthesis or in other semiartificial systems. Under O2 supersaturation, photocurrents of 322±19 µA cm(-2) were achieved. The photocurrents are only limited by mass transport of the terminal electron acceptor (O2). This implies that even higher electron-transfer rates may be achieved with PS1-based systems in general.


Subject(s)
Electrons , Light , Photosystem I Protein Complex/chemistry , Bioengineering , Cross-Linking Reagents , Electron Transport , Hydrogels/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Photosynthesis
5.
J Am Chem Soc ; 133(19): 7509-16, 2011 May 18.
Article in English | MEDLINE | ID: mdl-21517075

ABSTRACT

We measured single-molecule conductances for three different redox systems self-assembled onto gold by the STMBJ method and compared them with electrochemical heterogeneous rate constants determined by ultrafast voltammetry. It was observed that fast systems indeed give higher conductance. Monotonous dependency of conductance on potential reveals that large molecular fluctuations prevent the molecular redox levels to lie in between the Fermi levels of the electrodes in the nanogap configuration. Electronic coupling factors for both experimental approaches were therefore evaluated based on the superexchange mechanism theory. The results suggest that coupling is surprisingly on the same order of magnitude or even larger in conductance measurements whereas electron transfer occurs on larger distances than in transient electrochemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...