Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Purinergic Signal ; 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37572177

ABSTRACT

Head and neck squamous cell carcinomas (HNSCCs) are a heterogenous group of tumors and among the top 10 most common cancers and they arise from the epithelial tissues of the mucosal surfaces of the oral cavity, oropharynx, and larynx. Aberrant purinergic signaling has been associated with various cancer types. Here, we studied the role of the P2Y2 purinergic receptor (P2Y2R) in the context of oral cancer. We utilized bioinformatics analysis of deposited datasets to examine purinome gene expression in HNSCC tumors and cells lines and functionally characterized nucleotide-induced P2 receptor signaling in human FaDu and Cal27 and murine MOC2 oral cancer cell lines. Utilizing tumorigenesis assays with wild-type or P2ry2 knockout MOC2 cells we evaluated the role of P2Y2Rs in tumor growth and the host anti-tumor immune responses. Our data demonstrate that human and murine oral cancer cell lines express numerous P2 receptors, with the P2Y2R being highly expressed. Using syngeneic tumor grafts in wild-type mice, we observed that MOC2 tumors expressing P2Y2R were larger than P2Y2R-/- tumors. Wild-type MOC2 tumors contained a lower population of tumor-infiltrating CD11b+F4/80+ macrophages and CD3+ cells, which were revealed to be CD3+CD4+IFNγ+ T cells, compared to P2Y2R-/- tumors. These results were mirrored when utilizing P2Y2R-/- mice, indicating that the changes in MOC2 tumor growth and to the host anti-tumor immune response were independent of host derived P2Y2Rs. Results suggest that targeted suppression of the P2Y2R in HNSCC cells in vivo, rather than systemic P2Y2R antagonism, may be a more effective treatment strategy for HNSCCs.

2.
Arch Oral Biol ; 124: 105067, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33561807

ABSTRACT

OBJECTIVE: Sjögren's syndrome (SS) is a chronic autoimmune exocrinopathy characterized by lymphocytic infiltration of the salivary and lacrimal glands and decreased saliva and tear production. Previous studies indicate that the G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is upregulated in numerous models of salivary gland inflammation (i.e., sialadenitis), where it has been implicated as a key mediator of chronic inflammation. Here, we evaluate both systemic and localized P2Y2R antagonism as a means to resolve sialadenitis in the NOD.H-2h4,IFNγ-/-,CD28-/- (NOD.H-2h4 DKO) mouse model of SS. DESIGN: Female 4.5 month old NOD.H-2h4 DKO mice received daily intraperitoneal injections for 10 days of the selective P2Y2R antagonist, AR-C118925, or vehicle-only control. Single-dose localized intraglandular antagonist delivery into the Wharton's duct was also evaluated. Carbachol-induced saliva was measured and then submandibular glands (SMGs) were isolated and either fixed and paraffin-embedded for H&E staining, homogenized for RNA isolation or dissociated for flow cytometry analysis. RESULTS: Intraperitoneal injection, but not localized intraglandular administration, of AR-C118925 significantly enhanced carbachol-induced salivation and reduced lymphocytic foci and immune cell markers in SMGs of 5 month old NOD.H-2h4 DKO mice, compared to vehicle-injected control mice. We found that B cells represent the primary immune cell population in inflamed SMGs of NOD.H-2h4 DKO mice that express elevated levels of P2Y2R compared to C57BL/6 control mice. We further demonstrate a role for P2Y2Rs in mediating B cell migration and the release of IgM. CONCLUSION: Our findings suggest that the P2Y2R represents a novel therapeutic target for the treatment of Sjögren's syndrome.


Subject(s)
Sialadenitis , Sjogren's Syndrome , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Sialadenitis/drug therapy , Sjogren's Syndrome/drug therapy , Submandibular Gland
3.
Biochem Pharmacol ; 187: 114406, 2021 05.
Article in English | MEDLINE | ID: mdl-33412103

ABSTRACT

Purinergic receptors for extracellular nucleotides and nucleosides contribute to a vast array of cellular and tissue functions, including cell proliferation, intracellular and transmembrane ion flux, immunomodulation and thrombosis. In mammals, the purinergic receptor system is composed of G protein-coupled P1 receptors A1, A2A, A2B and A3 for extracellular adenosine, P2X1-7 receptors that are ATP-gated ion channels and G protein-coupled P2Y1,2,4,6,11,12,13 and 14 receptors for extracellular ATP, ADP, UTP, UDP and/or UDP-glucose. Recent studies have implicated specific P2Y receptor subtypes in numerous oncogenic processes, including cancer tumorigenesis, metastasis and chemotherapeutic drug resistance, where G protein-mediated signaling cascades modulate intracellular ion concentrations and activate downstream protein kinases, Src family kinases as well as numerous mitogen-activated protein kinases. We are honored to contribute to this special issue dedicated to the founder of the field of purinergic signaling, Dr. Geoffrey Burnstock, by reviewing the diverse roles of P2Y receptors in the initiation, progression and metastasis of specific cancers with an emphasis on pharmacological and genetic strategies employed to delineate cell-specific and P2Y receptor subtype-specific responses that have been investigated using in vitro and in vivo cancer models. We further highlight bioinformatic and empirical evidence on P2Y receptor expression in human clinical specimens and cover clinical perspectives where P2Y receptor-targeting interventions may have therapeutic relevance to cancer treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Disease Progression , Extracellular Fluid/metabolism , Neoplasms/metabolism , Nucleotides/metabolism , Receptors, Purinergic P2Y/metabolism , Adenosine Triphosphate/metabolism , Animals , Extracellular Fluid/drug effects , Humans , Neoplasms/drug therapy , Purinergic P2Y Receptor Agonists/administration & dosage , Purinergic P2Y Receptor Antagonists/administration & dosage , Signal Transduction/drug effects , Signal Transduction/physiology
4.
Front Pharmacol ; 11: 222, 2020.
Article in English | MEDLINE | ID: mdl-32231563

ABSTRACT

Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.

5.
J Clin Diagn Res ; 12(2): DC01-DC04, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29780759

ABSTRACT

INTRODUCTION: Bacterial antibiotic resistance is on rise despite advances in the development of new antibiotics. In an attempt to circumvent resistance, scientists are shifting focus from modifying existent antibiotics to identifying new antibiotic compounds. AIM: To assess the potential antibiotic effects of functionalised ferrocenecarboxylates para-substituted on the phenoxy pendant group to form: 4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl and 4-(H-pyrrol-1-yl)phenyl. MATERIALS AND METHODS: For this, we employed the Kirby-Bauer disc diffusion method using a collection of nine bacterial species: Staphylococcus aureus, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa, Serratia marcescens, Klebsiella pneumoniae, Bacillus subtilis, Proteus vulgaris and Enterobacter aerogenes. RESULTS: The results show that all four-halogen substituted ferrocenecarboxylates 4-fluorophenyl (23.33 µM, 11.66 µM, 5.83 µM), 4-chlorophenyl (10.16 µM, 5.08 µM, 2.54 µM), 4-bromophenyl (9.0 µM, 4.5 µM, 2.25 µM), and 4-iodophenyl (17.12 µM, 8.56 µM, 4.28 µM) exhibited an antibacterial effect by reducing proliferation of Bacillus subtilis. Meanwhile, only 4-bromophenyl (9.0 µM) and 4-chlorophenyl (10.16 µM) ferrocenecarboxylates were able to decrease the growth of Micrococcus luteus. CONCLUSION: Hence, functionalised ferrocenecarboxylates para-substituted with small and simple groups represent a novel class of bio-organometallic compounds with the potential to be used as antibacterial agents.

6.
Int J Sci Basic Appl Res ; 26(1): 26-46, 2016.
Article in English | MEDLINE | ID: mdl-27398384

ABSTRACT

Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice.

7.
Biophys Chem ; 197: 47-52, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25660392

ABSTRACT

Nanolipoprotein particles (NLPs), also known as nanodiscs, are lipid bilayers bounded by apolipoprotein. Lipids and membrane proteins cannot exchange between NLPs. However, the addition of bicelles opens NLPs and transfers their contents to bicelles, which freely exchange lipids and proteins. NLP-bicelle interactions may provide a new method for studying membrane protein oligomerization. The interaction mechanism was investigated by stopped flow fluorometry. NLPs with lipids having fluorescence resonance energy transfer (FRET) donors and acceptors were mixed with a 200-fold molar excess of dihexanoyl phosphatidylcholine (DHPC)/dimyristoyl phosphatidylcholine (DMPC) bicelles, and the rate of lipid transfer was monitored by the disappearance of FRET. Near or below the DMPC phase transition temperature, the kinetics were sigmoidal. Free DHPC and apolipoprotein were ruled out as participants in autocatalytic mechanisms. The NLP-bicelle mixing rate showed a strong temperature dependence (activation energy = 28 kcal/mol). Models are proposed for the NLP-bicelle mixing, including one involving fusion pores.


Subject(s)
Apolipoproteins/metabolism , Dimyristoylphosphatidylcholine/metabolism , Lipid Bilayers/metabolism , Phosphatidylcholines/metabolism , Apolipoproteins/chemistry , Dimyristoylphosphatidylcholine/chemistry , Fluorescence Resonance Energy Transfer , Kinetics , Lipid Bilayers/chemistry , Membrane Fusion , Micelles , Models, Molecular , Phosphatidylcholines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...