Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Toxicol ; 5: 1098432, 2023.
Article in English | MEDLINE | ID: mdl-36756349

ABSTRACT

The conventional battery for genotoxicity testing is not well suited to assessing the large number of chemicals needing evaluation. Traditional in vitro tests lack throughput, provide little mechanistic information, and have poor specificity in predicting in vivo genotoxicity. New Approach Methodologies (NAMs) aim to accelerate the pace of hazard assessment and reduce reliance on in vivo tests that are time-consuming and resource-intensive. As such, high-throughput transcriptomic and flow cytometry-based assays have been developed for modernized in vitro genotoxicity assessment. This includes: the TGx-DDI transcriptomic biomarker (i.e., 64-gene expression signature to identify DNA damage-inducing (DDI) substances), the MicroFlow® assay (i.e., a flow cytometry-based micronucleus (MN) test), and the MultiFlow® assay (i.e., a multiplexed flow cytometry-based reporter assay that yields mode of action (MoA) information). The objective of this study was to investigate the utility of the TGx-DDI transcriptomic biomarker, multiplexed with the MicroFlow® and MultiFlow® assays, as an integrated NAM-based testing strategy for screening data-poor compounds prioritized by Health Canada's New Substances Assessment and Control Bureau. Human lymphoblastoid TK6 cells were exposed to 3 control and 10 data-poor substances, using a 6-point concentration range. Gene expression profiling was conducted using the targeted TempO-Seq™ assay, and the TGx-DDI classifier was applied to the dataset. Classifications were compared with those based on the MicroFlow® and MultiFlow® assays. Benchmark Concentration (BMC) modeling was used for potency ranking. The results of the integrated hazard calls indicate that five of the data-poor compounds were genotoxic in vitro, causing DNA damage via a clastogenic MoA, and one via a pan-genotoxic MoA. Two compounds were likely irrelevant positives in the MN test; two are considered possibly genotoxic causing DNA damage via an ambiguous MoA. BMC modeling revealed nearly identical potency rankings for each assay. This ranking was maintained when all endpoint BMCs were converted into a single score using the Toxicological Prioritization (ToxPi) approach. Overall, this study contributes to the establishment of a modernized approach for effective genotoxicity assessment and chemical prioritization for further regulatory scrutiny. We conclude that the integration of TGx-DDI, MicroFlow®, and MultiFlow® endpoints is an effective NAM-based strategy for genotoxicity assessment of data-poor compounds.

2.
BMC Res Notes ; 12(1): 526, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31429798

ABSTRACT

OBJECTIVE: The purpose of this side product of another unpublished research project, was to address the effects of a training program on skeletal muscle adaptations of people with myotonic dystrophy type 1 (DM1), under a multifaceted perspective. The objective of this study was to look at training induced muscular adaptations by evaluating changes in muscle strength, myofiber cross-sectional area (CSA), proportion of myofiber types and with indirect markers of muscle growth [proportion of centrally nucleated fibers (CNF) and density of neutrophils and macrophages]. Two men with DM1 underwent a 12-week strength/endurance training program (18 sessions). Two muscle biopsies were obtained pre- and post-training program. RESULTS: Muscular adaptations occurred only in Patient 1, who attended 72% of the training sessions compared to 39% for Patient 2. These adaptations included increase in the CSA of type I and II myofibers and changes in their proportion. No changes were observed in the percentage of CNF, infiltration of neutrophils and macrophages and muscle strength. These results illustrate the capacity of skeletal muscle cells to undergo adaptations linked to muscle growth in DM1 patients. Also, these adaptations seem to be dependent on the attendance. Trial registration Clinicaltrials.gov NCT04001920 retrospectively registered on June 26th, 2019.


Subject(s)
Adaptation, Physiological , Muscle, Skeletal/physiopathology , Myotonic Dystrophy/physiopathology , Myotonic Dystrophy/therapy , Adult , Humans , Leukocytes/pathology , Male , Middle Aged , Muscle Fibers, Skeletal/pathology
3.
Clin Physiol Funct Imaging ; 35(3): 203-9, 2015 May.
Article in English | MEDLINE | ID: mdl-24690449

ABSTRACT

The purpose of this study was to compare three methods to assess vertical jump height, to determine their limitations and to propose solutions to mitigate their effects. The chosen methods were the contact mat, the optical system and the Sargent jump. The testing environment was designed such that all three systems simultaneously measured the vertical jump height. A total of 41 kinesiology students (18 women, 23 men, mean age 23·2 ± 4·5 years) participated in this study. Data show that the contact mat and the optical system essentially provide similar results (P = 0·912) and that the correlation coefficient between the two systems was 0·972 (r(2)  = 0·944). However, it was found that the Sargent jump has a tendency to overestimate the height, providing a measurement that is significantly different from the other two methods as the jumps are higher than 30·64 cm (P = 0·044). Through the design of the experiment, several sources of errors were identified and mathematically modelled. These sources include optical sensor placement, flat-footed landing and hip/knee bend. Whenever possible, the errors were quantified and solutions were proposed.


Subject(s)
Exercise Test/instrumentation , Muscle, Skeletal/physiology , Optics and Photonics/instrumentation , Transducers, Pressure , Adult , Biomechanical Phenomena , Equipment Design , Female , Humans , Male , Models, Biological , Muscle Contraction , Muscle Strength , Predictive Value of Tests , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...