Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
FASEB J ; 37(2): e22765, 2023 02.
Article in English | MEDLINE | ID: mdl-36607642

ABSTRACT

The first line of defense against respiratory viruses relies on the antiviral and proinflammatory cytokine response initiated in infected respiratory epithelial cells. The cytokine response not only restricts virus replication and spreading, but also orchestrates the subsequent immune response. The epithelial Dual Oxidase 2 (DUOX2) has recently emerged as a regulator of the interferon antiviral response. Here, we investigated the role of DUOX2 in the inflammatory cytokine response using a model of A549 cells deficient in DUOX2 generated using Crispr-Cas9 and infected by Sendai virus. We found that the absence of DUOX2 selectively reduced the induction of a restricted panel of 14 cytokines and chemokines secreted in response to Sendai virus by 20 to 89%. The secreted factors produced by epithelial cells upon virus infection promoted the migration, adhesion, and degranulation of primary human neutrophils, in part through the DUOX2-dependent secretion of TNF and chemokines. In contrast, DUOX2 expression did not impact neutrophil viability or NETosis, thereby highlighting a selective impact of DUOX2 in neutrophil functions. Overall, this study unveils previously unrecognized roles of epithelial DUOX2 in the epithelial-immune cells crosstalk during respiratory virus infection.


Subject(s)
Neutrophils , Viruses , Humans , Dual Oxidases/genetics , Dual Oxidases/metabolism , Epithelial Cells/metabolism , Cytokines/metabolism , Antiviral Agents/pharmacology , Chemokines/metabolism
3.
Viruses ; 13(9)2021 09 02.
Article in English | MEDLINE | ID: mdl-34578334

ABSTRACT

3D-printed alternatives to standard flocked swabs were rapidly developed to provide a response to the unprecedented and sudden need for an exponentially growing amount of diagnostic tools to fight the COVID-19 pandemic. In light of the anticipated shortage, a hospital-based 3D-printing platform was implemented in our institution for the production of swabs for nasopharyngeal and oropharyngeal sampling based on the freely available, open-source design provided to the community by University of South Florida's Health Radiology and Northwell Health System teams as a replacement for locally used commercial swabs. Validation of our 3D-printed swabs was performed with a head-to-head diagnostic accuracy study of the 3D-printed "Northwell model" with the cobas PCR Media® swab sample kit. We observed an excellent concordance (total agreement 96.8%, Kappa 0.936) in results obtained with the 3D-printed and flocked swabs, indicating that the in-house 3D-printed swab could be used reliably in the context of a shortage of flocked swabs. To our knowledge, this is the first study to report on autonomous hospital-based production and clinical validation of 3D-printed swabs.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2 , COVID-19 Testing/instrumentation , Disease Management , Humans , Nasopharynx/virology , Polymerase Chain Reaction/methods , Printing, Three-Dimensional , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Specimen Handling/methods
4.
Sci Signal ; 14(680)2021 04 27.
Article in English | MEDLINE | ID: mdl-33906974

ABSTRACT

Protein function is regulated by posttranslational modifications (PTMs), among which reversible oxidation of cysteine residues has emerged as a key regulatory mechanism of cellular responses. Given the redox regulation of virus-host interactions, the identification of oxidized cysteine sites in cells is essential to understand the underlying mechanisms involved. Here, we present a proteome-wide identification of reversibly oxidized cysteine sites in oxidant-treated cells using a maleimide-based bioswitch method coupled to mass spectrometry analysis. We identified 2720 unique oxidized cysteine sites within 1473 proteins with distinct abundances, locations, and functions. Oxidized cysteine sites were found in numerous signaling pathways, many relevant to virus-host interactions. We focused on the oxidation of STING, the central adaptor of the innate immune type I interferon pathway, which is stimulated in response to the detection of cytosolic DNA by cGAS. We demonstrated the reversible oxidation of Cys148 and Cys206 of STING in cells. Molecular analyses led us to establish a model in which Cys148 oxidation is constitutive, whereas Cys206 oxidation is inducible by oxidative stress or by the natural ligand of STING, 2'3'-cGAMP. Our data suggest that the oxidation of Cys206 prevented hyperactivation of STING by causing a conformational change associated with the formation of inactive polymers containing intermolecular disulfide bonds. This finding should aid the design of therapies targeting STING that are relevant to autoinflammatory disorders, immunotherapies, and vaccines.


Subject(s)
Cysteine , Membrane Proteins/metabolism , Proteomics , Cysteine/metabolism , Humans , Oxidation-Reduction , Protein Processing, Post-Translational , Proteome/genetics , Proteome/metabolism
5.
Cells ; 8(8)2019 08 17.
Article in English | MEDLINE | ID: mdl-31426476

ABSTRACT

Interferon (IFN) ß and Tumor Necrosis Factor (TNF) are key players in immunity against viruses. Compelling evidence has shown that the antiviral and inflammatory transcriptional response induced by IFNß is reprogrammed by crosstalk with TNF. IFNß mainly induces interferon-stimulated genes by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway involving the canonical ISGF3 transcriptional complex, composed of STAT1, STAT2, and IRF9. The signaling pathways engaged downstream of the combination of IFNß and TNF remain elusive, but previous observations suggested the existence of a response independent of STAT1. Here, using genome-wide transcriptional analysis by RNASeq, we observed a broad antiviral and immunoregulatory response initiated in the absence of STAT1 upon IFNß and TNF costimulation. Additional stratification of this transcriptional response revealed that STAT2 and IRF9 mediate the expression of a wide spectrum of genes. While a subset of genes was regulated by the concerted action of STAT2 and IRF9, other gene sets were independently regulated by STAT2 or IRF9. Collectively, our data supports a model in which STAT2 and IRF9 act through non-canonical parallel pathways to regulate distinct pool of antiviral and immunoregulatory genes in conditions with elevated levels of both IFNß and TNF.


Subject(s)
Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-beta/physiology , STAT2 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/physiology , Vesicular Stomatitis/immunology , Vesicular stomatitis Indiana virus/immunology , A549 Cells , Humans
6.
Sci Rep ; 7(1): 17388, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234123

ABSTRACT

The host antiviral response involves the induction of interferons and proinflammatory cytokines, but also the activation of cell death pathways, including apoptosis, to limit viral replication and spreading. This host defense is strictly regulated to eliminate the infection while limiting tissue damage that is associated with virus pathogenesis. Post-translational modifications, most notably phosphorylation, are key regulators of the antiviral defense implying an important role of protein phosphatases. Here, we investigated the role of the dual-specificity phosphatase 1 (DUSP1) in the host defense against human respiratory syncytial virus (RSV), a pathogenic virus of the Pneumoviridae family, and Sendai virus (SeV), a model virus being developed as a vector for anti-RSV vaccine. We found that DUSP1 is upregulated before being subjected to proteasomal degradation. DUSP1 does not inhibit the antiviral response, but negatively regulates virus-induced JNK/p38 MAPK phosphorylation. Interaction with the JNK-interacting protein 1 scaffold protein prevents dephosphorylation of JNK by DUSP1, likely explaining that AP-1 activation and downstream cytokine production are protected from DUSP1 inhibition. Importantly, DUSP1 promotes SeV-induced apoptosis and suppresses cell migration in RSV-infected cells. Collectively, our data unveils a previously unrecognized selective role of DUSP1 in the regulation of tissue damage and repair during infections by RSV and SeV.


Subject(s)
Apoptosis , Cell Movement , Dual Specificity Phosphatase 1/metabolism , MAP Kinase Signaling System , Respiratory Syncytial Virus Infections/metabolism , Respirovirus Infections/metabolism , A549 Cells , Adaptor Proteins, Signal Transducing/metabolism , Dual Specificity Phosphatase 1/genetics , Gene Expression Regulation , Humans , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus, Human , Respirovirus Infections/genetics , Sendai virus
7.
J Vis Exp ; (107): e53723, 2016 Jan 24.
Article in English | MEDLINE | ID: mdl-26862747

ABSTRACT

The IRF3 transcription factor is critical for the first line of defense against pathogens mainly through interferon ß and antiviral gene expression. A detailed analysis of IRF3 activation is essential to understand how pathogens induce or evade the innate antiviral response. Distinct activated forms of IRF3 can be distinguished based on their phosphorylation and monomer vs dimer status. In vivo discrimination between the different activated species of IRF3 can be achieved through the separation of IRF3 phosphorylated forms based on their mobility shifts on SDS-PAGE. Additionally, the levels of IRF3 monomer and dimer can be monitored using non-denaturing electrophoresis. Here, we detail a procedure to reach the highest resolution to gain the most information regarding IRF3 activation status. This is achieved through the combination of a high resolution SDS-PAGE and a native-PAGE coupled to immunoblots using multiple total and phosphospecific antibodies. This experimental strategy constitutes an affordable and sensitive approach to acquire all the necessary information for a complete analysis of the phosphorylation-mediated activation of IRF3.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Immunoblotting/methods , Interferon Regulatory Factor-3/metabolism , Antibody Specificity , Cell Line, Tumor , Humans , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...