Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 101(1-1): 012608, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32069591

ABSTRACT

A binary mixture of droplets and patchy colloids, where patches are arranged in tetrahedral symmetry, is studied with Metropolis Monte Carlo simulations. The colloidal patches attract droplets, while both the colloid-colloid and the droplet-droplet interactions are hard sphere like. We find stable crystal structures with atomic analogs ZnS, CaF_{2}, and fcc or hcp (face centered cubic or hexagonal close packed) of the droplets coexisting with a dispersed fluid of the colloids. The simulated crystal structures agree well with those predicted by close-packing calculations for an intermediate range of droplet-colloid size ratios. A discrepancy between the simulations and theoretical predictions occurs at low and high size ratios. The results of the simulations for mixtures with anisotropic colloid-droplet interactions reveal a richer phase diagram, with ZnS-gas and ZnS-fluid coexistence, as compared to the isotropic case. For the example of a square planar patch arrangement, we find a particular crystal structure, consisting of two interpenetrating fcc or hcp lattices with right bond angles. Such a structure has no known atomic analog. Our study of generic models of anisotropic colloid-droplet mixtures could provide a promising way towards the fabrication of novel and complex colloidal structures.

2.
Materials (Basel) ; 10(4)2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28772722

ABSTRACT

We study the cluster structures of one-patch colloidal particles generated by droplet evaporation using Monte Carlo simulations. The addition of anisotropic patch-patch interaction between the colloids produces different cluster configurations. We find a well-defined category of sphere packing structures that minimize the second moment of mass distribution when the attractive surface coverage of the colloids χ is larger than 0 . 3 . For χ < 0 . 3 , the uniqueness of the packing structures is lost, and several different isomers are found. A further decrease of χ below 0 . 2 leads to formation of many isomeric structures with less dense packings. Our results could provide an explanation of the occurrence of uncommon cluster configurations in the literature observed experimentally through evaporation-driven assembly.

3.
Langmuir ; 33(19): 4796-4805, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28423894

ABSTRACT

We investigate the drying process of three-component and polydisperse colloidal suspensions using Brownian dynamics simulations. We have previously reported (Phys. Rev. Lett. 2016, 116, 118301) on the drying of binary mixtures. For binary mixtures, we found that a gradient of colloidal osmotic pressure develops during drying and that this leads to the final film being stratified with a layer of smaller particles on top of a layer of larger particles. Here, we find that stratification by size is very general and also occurs in ternary and polydisperse mixtures. We name the segregation effect colloidal diffusiophoresis. In particular, we show that by changing the composition of a ternary mixture, different stratification morphologies can be achieved and hence the film properties can be tuned. In polydisperse spheres, colloidal diffusiophoresis leads to enrichment in the large particles at the bottom part of the film, whereas the top part is enriched with smaller particles. This segregation means that in the final film, the particle size distribution depends on height. Thus, the properties of the film will then depend on height. We propose a model that predicts a power-law dependence of the phoretic velocity on particle size. Results from the model and simulation show a good agreement.

4.
ACS Appl Mater Interfaces ; 8(50): 34755-34761, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27936562

ABSTRACT

Stratified coatings are used to provide properties at a surface, such as hardness or refractive index, which are different from underlying layers. Although time-savings are offered by self-assembly approaches, there have been no methods yet reported to offer stratification on demand. Here, we demonstrate a strategy to create self-assembled stratified coatings, which can be switched to homogeneous structures when required. We use blends of large and small colloidal polymer particle dispersions in water that self-assemble during drying because of an osmotic pressure gradient that leads to a downward velocity of larger particles. Our confocal fluorescent microscopy images reveal a distinct surface layer created by the small particles. When the pH of the initial dispersion is raised, the hydrophilic shells of the small particles swell substantially, and the stratification is switched off. Brownian dynamics simulations explain the suppression of stratification when the small particles are swollen as a result of reduced particle mobility, a drop in the pressure gradient, and less time available before particle jamming. Our strategy paves the way for applications in antireflection films and protective coatings in which the required surface composition can be achieved on demand, simply by adjusting the pH prior to deposition.

5.
Phys Rev E ; 93(5): 052609, 2016 May.
Article in English | MEDLINE | ID: mdl-27300953

ABSTRACT

We investigate the behavior of a mixture of asymmetric colloidal dumbbells and emulsion droplets by means of kinetic Monte Carlo simulations. The evaporation of the droplets and the competition between droplet-colloid attraction and colloid-colloid interactions lead to the formation of clusters built up of colloid aggregates with both closed and open structures. We find that stable packings and hence complex colloidal structures can be obtained by changing the relative size of the colloidal spheres and/or their interfacial tension with the droplets.

8.
Phys Rev E ; 93: 042601, 2016 04.
Article in English | MEDLINE | ID: mdl-27176346

ABSTRACT

We investigate a model for colloidal network formation using Brownian dynamics computer simulations. Hysteretic springs establish transient bonds between particles with repulsive cores. If a bonded pair of particles is separated by a cutoff distance, the spring vanishes and reappears only if the two particles contact each other. We present results for the bond lifetime distribution and investigate the properties of the van Hove dynamical two-body correlation function. The model displays crossover from fluidlike dynamics, via transient network formation, to arrested quasistatic network behavior.

9.
Phys Rev Lett ; 116(11): 118301, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035324

ABSTRACT

In simulations and experiments, we study the drying of films containing mixtures of large and small colloidal particles in water. During drying, the mixture stratifies into a layer of the larger particles at the bottom with a layer of the smaller particles on top. We developed a model to show that a gradient in osmotic pressure, which develops dynamically during drying, is responsible for the segregation mechanism behind stratification.

10.
J Phys Condens Matter ; 28(24): 244024, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27115673

ABSTRACT

We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium.

11.
ACS Nano ; 10(2): 2232-42, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26767891

ABSTRACT

When fabricating photonic crystals from suspensions in volatile liquids using the horizontal deposition method, the conventional approach is to evaporate slowly to increase the time for particles to settle in an ordered, periodic close-packed structure. Here, we show that the greatest ordering of 10 nm aqueous gold nanoparticles (AuNPs) in a template of larger spherical polymer particles (mean diameter of 338 nm) is achieved with very fast water evaporation rates obtained with near-infrared radiative heating. Fabrication of arrays over areas of a few cm(2) takes only 7 min. The assembly process requires that the evaporation rate is fast relative to the particles' Brownian diffusion. Then a two-dimensional colloidal crystal forms at the falling surface, which acts as a sieve through which the AuNPs pass, according to our Langevin dynamics computer simulations. With sufficiently fast evaporation rates, we create a hybrid structure consisting of a two-dimensional AuNP nanoarray (or "nanogrid") on top of a three-dimensional polymer opal. The process is simple, fast, and one-step. The interplay between the optical response of the plasmonic Au nanoarray and the microstructuring of the photonic opal results in unusual optical spectra with two extinction peaks, which are analyzed via finite-difference time-domain method simulations. Comparison between experimental and modeling results reveals a strong interplay of plasmonic modes and collective photonic effects, including the formation of a high-order stopband and slow-light-enhanced plasmonic absorption. The structures, and hence their optical signatures, are tuned by adjusting the evaporation rate via the infrared power density.

12.
Article in English | MEDLINE | ID: mdl-25871102

ABSTRACT

We investigate the onset of wall-induced convection in vertically vibrated granular matter by means of experiments and two-dimensional computer simulations. In both simulations and experiments we find that the wall-induced convection occurs inside the bouncing bed region of the parameter space, in which the granular bed behaves like a bouncing ball. A good agreement between experiments and simulations is found for the peak vibration acceleration at which convection starts. By comparing the results of simulations initialized with and without defects, we find that the onset of convection occurs at lower vibration strengths in the presence of defects. Furthermore, we find that the convection of granular particles initialized in a perfect hexagonal lattice is related to the nucleation of defects and the process is described by an Arrhenius law.

13.
Phys Rev Lett ; 113(16): 167801, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25361281

ABSTRACT

Theoretical approaches to nonequilibrium many-body dynamics generally rest upon an adiabatic assumption, whereby the true dynamics is represented as a sequence of equilibrium states. Going beyond this simple approximation is a notoriously difficult problem. For the case of classical Brownian many-body dynamics, we present a simulation method that allows us to isolate and precisely evaluate superadiabatic correlations and the resulting forces. Application of the method to a system of one-dimensional hard particles reveals the importance for the dynamics, as well as the complexity, of these nontrivial out-of-equilibrium contributions. Our findings help clarify the status of dynamical density functional theory and provide a rational basis for the development of improved theories.

14.
Article in English | MEDLINE | ID: mdl-25122293

ABSTRACT

We study the order-disorder transition of horizontally swirled dry and wet granular disks by means of computer simulations. Our systematic investigation of the local order formation as a function of amplitude and period of the external driving force shows that a large cluster of hexagonally ordered particles forms for both dry and wet granular particles at intermediate driving energies. Disordered states are found at small and large driving energies. Wet granular particles reach a higher degree of local hexagonal order with respect to the dry case. For both cases we report a qualitative phase diagram showing the amount of local order at different state points. Furthermore, we find that the transition from hexagonal order to a disordered state is characterized by the appearance of particles with square local order.


Subject(s)
Computer Simulation , Motion , Particle Size
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 1): 040401, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680411

ABSTRACT

A mixture of hard-sphere particles and model emulsion droplets is studied with a Brownian dynamics simulation. We find that the addition of nonwetting emulsion droplets to a suspension of pure hard spheres can lead to both gas-liquid and fluid-solid phase separations. Furthermore, we find a stable fluid of hard-sphere clusters. The stability is due to the saturation of the attraction that occurs when the surface of the droplets is completely covered with colloidal particles. At larger emulsion droplet densities a percolation transition is observed. The resulting networks of colloidal particles show dynamical and mechanical properties typical of a colloidal gel. The results of the model are in good qualitative agreement with recent experimental findings [E. Koos and N. Willenbacher, Science 331, 897 (2011)] in a mixture of colloidal particles and two immiscible fluids.


Subject(s)
Colloids/chemistry , Emulsions/chemistry , Microspheres , Models, Chemical , Models, Molecular , Computer Simulation
16.
Nanoscale ; 4(7): 2491-9, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22395669

ABSTRACT

This article addresses wrinkle assisted assembly of core-shell particles with hard cores and soft poly-(N-isopropylacrylamide) shells. As core materials we chose silica as well as silver nanoparticles. The assembled structures show that the soft shells act as a separator between the inorganic cores. Anisotropic alignment is found on two length scales, macroscopically guided through the wrinkle structure and locally due to deformation of the polymer shell leading to smaller inter-core separations as compared to assembly on flat substrates without confinement. The structures were analysed by means of scanning electron microscopy. Radial distribution functions are shown, clearly highlighting the impact of confinement on nearest neighbour distances and symmetry. The observed ordering is directly compared to Monte-Carlo simulations for hard-core/soft-shell particles, showing that the observed symmetries are a consequence of the soft interaction potential and differ qualitatively from a hard-sphere situation. For the silver-poly-(N-isopropylacrylamide) particles, we show UV-vis absorbance measurements revealing optical anisotropy of the generated structures due to plasmon coupling. Furthermore, the high degree of order of the assembled structures on macroscopic areas is demonstrated by laser diffraction effects.


Subject(s)
Acrylamides/chemistry , Hardness/physiology , Molecular Conformation , Nanoshells/chemistry , Polymerization , Acrylamides/pharmacokinetics , Acrylic Resins/chemistry , Acrylic Resins/pharmacokinetics , Chemical Precipitation , Microspheres , Microtechnology/methods , Models, Biological , Polymers/chemistry , Silicon Dioxide/chemistry , Surface Properties
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 1): 041411, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21599162

ABSTRACT

We study the transport of paramagnetic colloidal particles on a patterned magnetic substrate with kinetic Monte Carlo and Brownian dynamics computer simulations. The planar substrate is decorated with point dipoles in either parallel or zigzag stripe arrangements and exposed to an additional external magnetic field that oscillates in time. For the case of parallel stripes we find that the magnitude and direction of the particle current is controlled by the tilt angle of the external magnetic field. The effect is reliably obtained in a wide range of ratios between temperature and magnetic permeability. Particle transport is achieved only when the period of oscillation of the external field is greater than a critical value. For the case of zigzag stripes a current is obtained using an oscillating external field normal to the substrate. In this case, transport is possible only in the vertex of the zigzag, giving rise to a narrow stream of particles. The magnitude and direction of the particle current are found to be controlled by a combination of the zigzag angle and the distance of the colloids from the substrate. Metropolis Monte Carlo and Brownian dynamics simulations predict results that are in good agreement with each other. Using kinetic Monte Carlo we find that at high density the particle transport is hindered by jamming.


Subject(s)
Colloids/chemistry , Colloids/radiation effects , Electromagnetic Fields , Models, Chemical , Models, Molecular , Computer Simulation
18.
J Chem Phys ; 135(24): 244501, 2011 Dec 28.
Article in English | MEDLINE | ID: mdl-22225163

ABSTRACT

We consider a theoretical model for a binary mixture of colloidal particles and spherical emulsion droplets. The hard sphere colloids interact via additional short-ranged attraction and long-ranged repulsion. The droplet-colloid interaction is an attractive well at the droplet surface, which induces the Pickering effect. The droplet-droplet interaction is a hard-core interaction. The droplets shrink in time, which models the evaporation of the dispersed (oil) phase, and we use Monte Carlo simulations for the dynamics. In the experiments, polystyrene particles were assembled using toluene droplets as templates. The arrangement of the particles on the surface of the droplets was analyzed with cryogenic field emission scanning electron microscopy. Before evaporation of the oil, the particle distribution on the droplet surface was found to be disordered in experiments, and the simulations reproduce this effect. After complete evaporation, ordered colloidal clusters are formed that are stable against thermal fluctuations. Both in the simulations and with field emission scanning electron microscopy, we find stable packings that range from doublets, triplets, and tetrahedra to complex polyhedra of colloids. The simulated cluster structures and size distribution agree well with the experimental results. We also simulate hierarchical assembly in a mixture of tetrahedral clusters and droplets, and find supercluster structures with morphologies that are more complex than those of clusters of single particles.

19.
J Chem Phys ; 133(22): 224505, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21171689

ABSTRACT

We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the "self " component having only one particle, the "distinct" component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy, and arrested dynamics at high densities.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 1): 041402, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999422

ABSTRACT

We systematically study the relationship between equilibrium and nonequilibrium phase diagrams of a system of short-ranged attractive colloids. Using Monte Carlo and Brownian dynamics simulations we find a window of enhanced crystallization that is limited at high interaction strength by a slowing down of the dynamics and at low interaction strength by the high nucleation barrier. We find that the crystallization is enhanced by the metastable gas-liquid binodal by means of a two-stage crystallization process. First, the formation of a dense liquid is observed and second the crystal nucleates within the dense fluid. In addition, we find at low colloid packing fractions a fluid of clusters, and at higher colloid packing fractions a percolating network due to an arrested gas-liquid phase separation that we identify with gelation. We find that this arrest is due to crystallization at low interaction energy and it is caused by a slowing down of the dynamics at high interaction strength. Likewise, we observe that the clusters which are formed at low colloid packing fractions are crystalline at low interaction energy, but glassy at high interaction energy. The clusters coalesce upon encounter.

SELECTION OF CITATIONS
SEARCH DETAIL
...