Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(2): e23403, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38197297

ABSTRACT

Androgen receptor (AR) content has been implicated in the differential response between high and low responders following resistance exercise training (RET). However, the influence of AR expression on acute skeletal muscle damage and whether it may influence the adaptive response to RET in females is poorly understood. Thus, the purpose of this exploratory examination was to 1) investigate changes in AR content during skeletal muscle repair and 2) characterize AR-mediated sex-based differences following RET. A skeletal muscle biopsy from the vastus lateralis was obtained from 26 healthy young men (n = 13) and women (n = 13) at baseline and following 300 eccentric kicks. Subsequently, participants performed 10 weeks of full-body RET and a final muscle biopsy was collected. In the untrained state, AR mRNA expression was associated with paired box protein-7 (PAX7) mRNA in males. For the first time in human skeletal muscle, we quantified AR content in the myofiber and localized to the nucleus where AR has been shown to trigger cellular outcomes related to growth. Upon eccentric damage, nuclear-associated AR (nAR) content increased (p < .05) in males and not females. Males with the greatest increase in cross-sectional area (CSA) post-RET had more (p < .05) nAR content than females with the greatest gain CSA. Collectively, skeletal muscle damage and RET increased AR protein, and both gene and hypertrophy measures revealed sex differences in relation to AR. These findings suggest that AR content but more importantly, nuclear localization, is a factor that differentiates RET-induced hypertrophy between males and females.


Subject(s)
Receptors, Androgen , Resistance Training , Female , Humans , Male , Receptors, Androgen/genetics , Androgens , Hypertrophy , RNA, Messenger/genetics
2.
Front Physiol ; 13: 880625, 2022.
Article in English | MEDLINE | ID: mdl-35574443

ABSTRACT

After muscle injury, the interaction between muscle satellite cells (SC) and the immune response is instrumental for the repair and regeneration of skeletal muscle tissue. Studies have reported sex-based differences in the skeletal muscle inflammatory and regenerative response following injury. However, many of these studies investigated such differences by manipulating the concentration of estradiol, in rodents and humans, without directly comparing males to females. We sought to explore differences in the myogenic and inflammatory response following unaccustomed eccentric exercise in males and females. We hypothesized that females would have a blunted myogenic and inflammatory response as compared to males. Methods: 26 (13 male, 13 female) healthy young adults (22 ± 0.4 years [mean ± SEM]) performed 300 maximal eccentric contractions (180°/s) of the knee extensors. Muscle biopsies were taken before (pre) and 48 h (post) following eccentric damage. SC content and activation were determined by immunohistochemical and real time-polymerase chain reaction (rt-PCR) analysis. Inflammatory markers were analyzed using rt-PCR. Results: Following eccentric damage, males had a greater expansion of type I-associated SC (p < 0.05), and there was a trend for a greater expansion in total SC (type I + II fibers) (p = 0.06) compared to females. There was a trend for a greater increase in Pax7 and CCL2 gene expression in males compared to females (p = 0.09). Conclusion: We conclude that there are sex-based differences in the myogenic and inflammatory response, where females have a blunted SC and inflammatory response.

3.
Med Sci Sports Exerc ; 53(8): 1699-1707, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33756525

ABSTRACT

INTRODUCTION: Resistance exercise training (RET) induces muscle hypertrophy that, when combined with co-temporal protein ingestion, is enhanced. However, fewer studies have been conducted when RET is combined with multi-ingredient supplements. PURPOSE: We aimed to determine the effect of a high-quality multi-ingredient nutritional supplement (SUPP) versus an isonitrogenous (lower protein quality), isoenergetic placebo (PL) on RET-induced gains in lean body mass (LBM), muscle thickness, and muscle cross-sectional area (CSA). We hypothesized that RET-induced gains in LBM and muscle CSA would be greater in SUPP versus PL. METHODS: In a double-blind randomized controlled trial, 26 (13 male, 13 female) healthy young adults (mean ± SD, 22 ± 2 yr) were randomized to either the SUPP group (n = 13; 20 g whey protein, 2 g leucine, 2.5 g creatine monohydrate, 300 mg calcium citrate, 1000 IU vitamin D) or the PL group (n = 13; 20 g collagen peptides, 1.4 g alanine, 0.6 g glycine) groups, ingesting their respective supplements twice daily. Measurements were obtained before and after a 10-wk linear progressive RET program. RESULTS: Greater increases in LBM were observed for SUPP versus PL (SUPP: +4.1 ± 1.3 kg, PL: +2.8 ± 1.7 kg, P < 0.05). No additive effect of the supplement could be detected on vastus lateralis muscle CSA, but SUPP did result in increased biceps brachii muscle CSA and thickness (P < 0.05). CONCLUSIONS: We conclude that when combined with RET, the consumption of SUPP increased LBM and upper-body CSA and thickness to a greater extent than to that observed in the PL group of healthy young adults.


Subject(s)
Adaptation, Physiological , Dietary Supplements , Muscle, Skeletal/growth & development , Resistance Training , Body Composition , Double-Blind Method , Female , Humans , Male , Muscle Strength , Muscle, Skeletal/physiology , Young Adult
4.
Appl Physiol Nutr Metab ; 45(4): 368-375, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32207991

ABSTRACT

The percutaneous muscle biopsy procedure is an invaluable tool for characterizing skeletal muscle and capillarization. Little is known about methodological or biological variation stemming from the technique in heterogeneous muscle. Five muscle biopsies were taken from the vastus lateralis of a group of young men (n = 29, 22 ± 1 years) over a 96-h period. We investigated the repeatability of fibre distribution, indices of muscle capillarization and perfusion, and myofibre characteristics. No differences between the biopsies were reported in myofibre type distribution, cross-sectional area (CSA), and perimeter. Capillary-to-fibre perimeter exchange index and individual capillary-fibre contacts were unchanged with respect to the location of the muscle biopsy and index of capillarization. The variability in the sampling distribution of fibre type specific muscle CSA increased when fewer than 150 muscle fibres were quantified. Variability in fibre type distribution increased when fewer than 150 muscle fibres were quantified. Myofibre characteristics and indices of capillarization are largely consistent throughout the vastus lateralis when assessed via the skeletal muscle biopsy technique. Novelty Markers of muscle capillarization and perfusion were unchanged across multiple sites of the human vastus lateralis. Myofibre characteristics such as muscle cross-sectional area, perimeter, and fibre type distribution were also unchanged. Variation of muscle CSA was higher when fewer than 150 muscle fibres were quantified.


Subject(s)
Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Biopsy, Needle , Humans , Immunohistochemistry , Male , Young Adult
5.
Appl Physiol Nutr Metab ; 45(6): 581-590, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31661631

ABSTRACT

Muscle satellite cell (SC) regulation is a complex process involving many key signalling molecules. Recently, the neurotrophin brain-derived neurotropic factor (BDNF) has implicated in SC regulation in animals. To date, little is known regarding the role of BDNF in human SC function in vivo. Twenty-nine males (age, 21 ± 0.5 years) participated in the study. Muscle biopsies from the thigh were obtained prior to a bout of 300 maximal eccentric contractions (Pre), and at 6 h, 24 h, 72 h, and 96 h postexercise. BDNF was not detected in any quiescent (Pax7+/MyoD-) SCs across the time-course. BDNF colocalized to 39% ± 5% of proliferating (Pax7+/MyoD+) cells at Pre, which increased to 84% ± 3% by 96 h (P < 0.05). BDNF was only detected in 13% ± 5% of differentiating (Pax7-/MyoD+) cells at Pre, which increased to 67% ± 4% by 96 h (P < 0.05). The number of myogenin+ cells increased 95% from Pre (1.6 ± 0.2 cells/100 myofibres (MF)) at 24 h (3.1 ± 0.3 cells/100 MF) and remained elevated until 96 h (cells/100 MF), P < 0.05. The proportion of BDNF+/myogenin+ cells was 26% ± 0.3% at Pre, peaking at 24 h (49% ± 3%, P < 0.05) and remained elevated at 96 h (P < 0.05). These data are the first to demonstrate an association between SC proliferation and differentiation and BDNF expression in humans in vivo, with BDNF colocalization to SCs increasing during the later stages of proliferation and early differentiation. Novelty BDNF is associated with SC response to muscle injury. BDNF was not detected in nonactivated (quiescent) SCs. BDNF is associated with late proliferation and early differentiation of SCs in vivo in humans.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cell Differentiation/physiology , Exercise/physiology , Muscle, Skeletal , Satellite Cells, Skeletal Muscle/metabolism , Adult , Humans , Male , Muscle, Skeletal/cytology , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Young Adult
6.
J Appl Physiol (1985) ; 127(5): 1419-1426, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31513447

ABSTRACT

Skeletal muscle satellite cells (SC) play an important role in muscle repair following injury. The regulation of SC activity is governed by myogenic regulatory factors (MRF), including MyoD, Myf5, myogenin, and MRF4. The mRNA expression of these MRF in humans following muscle damage has been predominately measured in whole muscle homogenates. Whether the temporal expression of MRF in a whole muscle homogenate reflects SC-specific expression of MRF remains largely unknown. Sixteen young men (23.1 ± 1.0 yr) performed 300 unilateral eccentric contractions (180°/s) of the knee extensors. Percutaneous muscle biopsies from the vastus lateralis were taken before (Pre) and 48 h postexercise. Fluorescence-activated cell sorting analysis was utilized to purify NCAM+ muscle SC from the whole muscle homogenate. Forty-eight hours post-eccentric exercise, MyoD, Myf5, and myogenin mRNA expression were increased in the whole muscle homogenate (~1.4-, ~4.0-, ~1.7-fold, respectively, P < 0.05) and in isolated SC (~19.3-, ~17.5-, ~58.9-fold, respectively, P < 0.05). MRF4 mRNA expression was not increased 48 h postexercise in the whole muscle homogenate (P > 0.05) or in isolated SC (P > 0.05). In conclusion, our results suggest that the directional changes in mRNA expression of the MRF in a whole muscle homogenate in response to acute eccentric exercise reflects that observed in isolated muscle SC.NEW & NOTEWORTHY The myogenic program is controlled via transcription factors referred to as myogenic regulatory factors (MRF). Previous studies have derived MRF expression from whole muscle homogenates, but little work has examined whether the mRNA expression of these transcripts reflects the pattern of expression in the actual population of satellite cells (SC). We report that MRF expression from an enriched SC population reflects the directional pattern of expression from skeletal muscle biopsy samples following eccentric contractions.


Subject(s)
Exercise/physiology , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Myogenic Regulatory Factors/biosynthesis , Satellite Cells, Skeletal Muscle/metabolism , Gene Expression , Humans , Male , Myogenic Regulatory Factors/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...