Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Can J Physiol Pharmacol ; 95(2): 170-177, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27918843

ABSTRACT

This study investigated the effect of aqueous extract of Cucurbita ficifolia Bouché on systemic chronic inflammation in an obesity model induced by monosodium glutamate (MSG) via modulating the expression of adipokines (TNF-α, IL-6, resistin, and adiponectin) and immune-regulatory cytokines (IFN-γ and IL-10). Cucurbita ficifolia extract was administered daily by gavage to lean and MSG-obese mice for 30 days. At the end of treatment, cytokine mRNA expression in adipose tissue was determined by real-time polymerase chain reaction (PCR), and the protein levels of these cytokines were also quantified by enzyme-linked immunosorbent assay (ELISA). Cucurbita ficifolia extract decreased body mass and inflammation in MSG-obese mice by reducing the expression of TNF-α and IL-6; these decreases were parallel to significant reductions in protein levels. The extract also increased protein levels of IL-10 in lean mice and IFN-γ in both lean and MSG-obese mice. In conclusion, C. ficifolia extract modulates systemic chronic inflammation in MSG-obese mice and could have a beneficial effect on the adaptive immune system in obesity.


Subject(s)
Adipokines/biosynthesis , Cucurbita/chemistry , Cytokines/biosynthesis , Inflammation Mediators/metabolism , Interferon-gamma/biosynthesis , Plant Extracts/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Mice , Obesity/chemically induced , Obesity/metabolism , Plant Extracts/chemistry , Sodium Glutamate
2.
Am J Chin Med ; 40(1): 97-110, 2012.
Article in English | MEDLINE | ID: mdl-22298451

ABSTRACT

Type 2 diabetes is characterized by oxidative stress and a chronic low-grade inflammatory state, which also play roles in the pathogenesis of this disease and the accompanying vascular complications by increasing the production of free radicals and pro-inflammatory cytokines. Cucurbita ficifolia Bouché (C. ficifolia) is an edible Mexican plant whose hypoglycemic activity has been demonstrated in several experimental and clinical conditions. Recently, D-chiro-inositol has been proposed as the compound responsible for the hypoglycemic effects; however, the antioxidant and anti-inflammatory potential of this plant has not yet been explored. The aim of this research is to study the influence of a hypoglycemic, D-chiro-inositol-containing fraction from the C. ficifolia fruit (AP-Fraction) on biomarkers of oxidative stress, as well as on the inflammatory cytokines in streptozotocin-induced diabetes. The AP-Fraction obtained from the mature fruit of C. ficifolia contained 3.31 mg of D-chiro-inositol/g of AP-Fraction. The AP-Fraction was administrated daily by gavage to normal mice for 15 days as a preventive treatment. Then these animals were given streptozotocin, and the treatments were continued for an additional 33 days. Pioglitazone was used as a hypoglycemic drug for comparison. Administration of the AP-Fraction significantly increased glutathione (GSH) and decreased malondialdehyde (MDA) in the liver without significantly affecting the levels in other tissues. The AP-Fraction reduced TNF-α and increased IL-6 and IFN-γ in serum. Interestingly, the AP-Fraction also increased IL-10, an anti-inflammatory cytokine. These results suggest that C. ficifolia might be used as an alternative medication for the control of diabetes mellitus and that it has antioxidant and anti-inflammatory properties in addition to its hypoglycemic activity.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Cucurbita/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Inositol/therapeutic use , Phytotherapy , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Blood Glucose/metabolism , Cytokines/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2 , Fruit , Glutathione/metabolism , Hypoglycemic Agents/pharmacology , Inflammation Mediators/blood , Inositol/pharmacology , Liver/metabolism , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred Strains , Oxidative Stress/drug effects , Pioglitazone , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Thiazolidinediones/pharmacology
3.
J Ethnopharmacol ; 132(2): 400-7, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20713141

ABSTRACT

ETHNOPHARMACOLOGICAL IMPORTANCE: Psacalium peltatum (H.B.K.) Cass. (Asteraceae) is used medicinally to treat diabetes, rheumatic pains, as well as gastrointestinal and kidney ailments. Previous pharmacological and chemical assays have demonstrated that an aqueous fraction from Psacalium peltatum (AP-fraction) contains a carbohydrate-type compound with hypoglycemic activity. Nevertheless, studies have not yet considered the hypoglycemic action of the AP-faction by sub-chronic administration nor on other healing properties, some of which might be associated with DM2 and other inflammatory processes. AIM OF STUDY: To determine whether a hypoglycemic carbohydrate fraction (AP-fraction) from Psacalium peltatum roots has antioxidant and anti-inflammatory effects in streptozotocin-induced diabetes mice. MATERIAL AND METHODS: Healthy mice received either saline, the AP-fraction with a high content of fructans, or pioglitazone (a positive control) daily by gavage. After 15 days of treatment, these animals received a single intraperitoneal administration of streptozotocin and all treatments were continued for additional 33 days. The antioxidant and anti-inflammatory properties of the AP-fraction were evaluated through the quantification of biomarkers of oxidative stress (glutathione (GSH) and malondialdehyde (MDA)) and inflammation (interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), and IL-10). RESULTS: The AP-fraction reduced glycemia and the glycated hemoglobin. Furthermore, animals treated with the AP-fraction had increased GSH, while MDA was decreased in the liver and the heart, without changes in the kidneys and the pancreas. The AP-fraction significantly reduced TNF-α serum levels but did not modify IL-6; in addition, this fraction increased IFN-γ and IL-10 levels. The increase in IL-10 levels may indicate an inhibition of the production of pro-inflammatory cytokines such as TNF-α, whereas the increase in IFN-γ might be indicative of a beneficial effect on the immune system. CONCLUSIONS: The AP-fraction hypoglycemic fructans from Psacalium peltatum roots showed antioxidant and anti-inflammatory properties in mice with streptozotocin-induced diabetes. The Psacalium peltatum hypoglycemic fructans may be valuable in preventing insulin resistance, as well as the development and progression of diabetic complications caused by chronic inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Asteraceae/chemistry , Diabetes Mellitus, Experimental/drug therapy , Fructans/pharmacology , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Interferon-gamma/metabolism , Interleukin-10/analysis , Interleukin-10/metabolism , Interleukin-6/analysis , Interleukin-6/metabolism , Mice , Oxidative Stress/drug effects , Phytotherapy , Plant Extracts/chemistry , Plant Roots/chemistry , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...