Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2727, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177743

ABSTRACT

Otoliths are frequently used to infer environmental conditions or fish life history events based on trace-element concentrations. However, otoliths can be comprised of any one or combination of the three most common polymorphs of calcium carbonate-aragonite, calcite, and vaterite-which can affect the ecological interpretation of otolith trace-element results. Previous studies have reported heterogeneous calcium carbonate compositions between left and right otoliths but did not provide quantitative assessments of polymorph abundances. In this study, neutron diffraction and Raman spectroscopy were used to identify and quantify mineralogical compositions of Chinook salmon Oncorhynchus tshawytscha otolith pairs. We found mineralogical compositions frequently differed between otoliths in a pair and accurate calcium carbonate polymorph identification was rarely possible by visual inspection alone. The prevalence of multiple polymorphs in otoliths is not well-understood, and future research should focus on identifying otolith compositions and investigate how variations in mineralogy affect trace-element incorporation and potentially bias environmental interpretations.

2.
Ecotoxicology ; 25(6): 1136-49, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27154845

ABSTRACT

A 4.1 million m(3) coal ash release into the Emory and Clinch rivers in December 2008 at the Tennessee Valley Authority's Kingston Fossil Plant in east Tennessee, USA, prompted a long-term, large-scale biological monitoring effort to determine if there are chronic effects of this spill on resident biota. Because of the magnitude of the ash spill and the potential for exposure to coal ash-associated contaminants [e.g., selenium (Se), arsenic (As), and mercury (Hg)] which are bioaccumulative and may present human and ecological risks, an integrative, bioindicator approach was used. Three species of fish were monitored-bluegill (Lepomis macrochirus), redear sunfish (L. microlophus), and largemouth bass (Micropterus salmoides)-at ash-affected and reference sites annually for 5 years following the spill. On the same individual fish, contaminant burdens were measured in various tissues, blood chemistry parameters as metrics of fish health, and various condition and reproduction indices. A multivariate statistical approach was then used to evaluate relationships between contaminant bioaccumulation and fish metrics to assess the chronic, sub-lethal effects of exposure to the complex mixture of coal ash-associated contaminants at and around the ash spill site. This study suggests that while fish tissue concentrations of some ash-associated contaminants are elevated at the spill site, there was no consistent evidence of compromised fish health linked with the spill. Further, although relationships between elevated fillet burdens of ash-associated contaminants and some fish metrics were found, these relationships were not indicative of exposure to coal ash or spill sites. The present study adds to the weight of evidence from prior studies suggesting that fish populations have not incurred significant biological effects from spilled ash at this site: findings that are relevant to the current national discussions on the safe disposal of coal ash waste.


Subject(s)
Chemical Hazard Release , Coal Ash , Environmental Monitoring , Reproduction/physiology , Water Pollutants, Chemical/toxicity , Animals , Arsenic , Fishes , Mercury , Perciformes , Rivers/chemistry , Selenium , Tennessee , Water Pollutants, Chemical/analysis
3.
Environ Toxicol Chem ; 33(10): 2273-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24943719

ABSTRACT

In December 2008, 4.1 million cubic meters of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4 µg/g and 9 µg/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 µg/g. In the present study, the authors examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. Whereas Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the 5-yr period since the spill. These findings are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, the results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.


Subject(s)
Coal Ash/metabolism , Fishes/metabolism , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution/analysis , Animals , Coal Ash/analysis , Environmental Monitoring , Rivers/chemistry , Selenium/analysis , Tennessee , Water Pollutants, Chemical/analysis
4.
Environ Toxicol Chem ; 33(8): 1903-13, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24764206

ABSTRACT

The effect of coal ash exposure on fish health in freshwater communities is largely unknown. Given the large number of possible pathways of effects (e.g., toxicological effect of exposure to multiple metals, physical effects from ash exposure, and food web effects), measurement of only a few health metrics is not likely to give a complete picture. The authors measured a suite of 20 health metrics from 1100+ fish collected from 5 sites (3 affected and 2 reference) near a coal ash spill in east Tennessee over a 4.5-yr period. The metrics represented a wide range of physiological and energetic responses and were evaluated simultaneously using 2 multivariate techniques. Results from both hierarchical clustering and canonical discriminant analyses suggested that for most species × season combinations, the suite of fish health indicators varied more among years than between spill and reference sites within a year. In a few cases, spill sites from early years in the investigation stood alone or clustered together separate from reference sites and later year spill sites. Outlier groups of fish with relatively unique health profiles were most often from spill sites, suggesting that some response to the ash exposure may have occurred. Results from the 2 multivariate methods suggest that any change in the health status of fish at the spill sites was small and appears to have diminished since the first 2 to 3 yr after the spill.


Subject(s)
Chemical Hazard Release , Coal Ash/toxicity , Ecotoxicology/methods , Fishes , Health , Animals , Cluster Analysis , Discriminant Analysis , Food Chain , Fresh Water , Metals/toxicity , Tennessee
5.
Ecotoxicol Environ Saf ; 85: 30-6, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22947506

ABSTRACT

On December 22, 2008 a dike containing coal fly ash from the Tennessee Valley Authority Kingston Fossil Plant near Kingston Tennessee USA failed and resulted in the largest coal ash spill in U.S. history. Coal ash, a by-product of coal combustion, is known to contain multiple contaminants of concern, including arsenic and selenium. The purpose of this study was to investigate species differences in the bioaccumulation of arsenic and selenium and potential factors contributing to these differences (i.e., trophic dynamics and gut pH) in the vicinity of the Kingston coal ash spill. Elevated levels of arsenic and selenium were observed in various tissues of largemouth bass, white crappie, bluegill and redear sunfish from sites associated with the Kingston coal ash spill. Highest concentrations of selenium were found in redear sunfish with liver concentrations as high as 24.83mg/kg dry weight and ovary concentrations up to 10.40mg/kg dry weight at coal ash-associated sites. Investigations into the gut pH and trophic dynamics of redear sunfish and bluegill demonstrated a large difference in the gut physiology between these two species. Redear sunfish stomach and intestinal pH was found to be 1.1 and 0.16 pH units higher than in bluegill, respectively. In addition, fish from coal ash-associated sites showed enrichment differences ((15)N and (13)C) compared to no ash sites, indicating differences in food web dynamics between sites. These results imply the incorporation of coal ash-associated compounds into local food webs and/or a shift in diet at ash sites compared to the no ash reference sites. Based on these results, further investigation into a broader food web at ash-associated sites is warranted.


Subject(s)
Arsenic/metabolism , Coal Ash/metabolism , Fishes/physiology , Food Chain , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Carbon Isotopes/analysis , Female , Gastrointestinal Tract/drug effects , Liver/drug effects , Muscles/drug effects , Nitrogen Isotopes/analysis , Ovary/drug effects , Tennessee , Water Pollution, Chemical
6.
Oecologia ; 149(1): 150-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16639564

ABSTRACT

Community structure is the observable outcome of numerous processes. We conducted a laboratory experiment using a microbial model system to disentangle effects of nutrient enrichment, dispersal, and predation on prey species richness and predator abundance at local and metacommunity scales. Prey species included: Chilomonas sp., Colpidium striatum, Colpoda cucullus, Paramecium tetraurelia, P. caudatum, Philodina sp., Spirostomum sp., Tetrahymena thermophila, and Uronema sp., and Stentor coeruleus was the predator used. We hypothesized that: (1) increased basal resources should maintain greater species richness and higher predator abundance; (2) dispersal should maintain greater species richness; and (3) predation should reduce species richness, especially in the high resource treatments relative to no-predator treatments. Our results support all three hypotheses. Further, we show that dispersal affects richness at the local community scale but not at the metacommunity scale. However, predation seems to have major effects at both the local and metacommunity scale. Overall, our results show that effects of resource enrichment, dispersal, and predation were mostly additive rather than interactive, indicating that it may be sometimes easier to understand their effects than generally thought due to complex interactive effects.


Subject(s)
Ecosystem , Food Chain , Models, Theoretical , Analysis of Variance , Animals , Bacterial Physiological Phenomena , Eukaryota/physiology , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...