Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 23453, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34873201

ABSTRACT

Resonant scattering of electromagnetic waves is a widely studied phenomenon with a vast range of applications that span completely different fields, from astronomy or meteorology to spectroscopy and optical circuitry. Despite being subject of intensive research for many decades, new fundamental aspects are still being uncovered, in connection with emerging areas, such as metamaterials and metasurfaces or quantum and topological optics, to mention some. In this work, we demonstrate yet one more novel phenomenon arising in the scattered near field of medium sized objects comprising high refractive index materials, which allows the generation of colossal local magnetic fields. In particular, we show that GHz radiation illuminating a high refractive index ceramic sphere creates instant magnetic near-fields comparable to those in neutron stars, opening up a new paradigm for creation of giant magnetic fields on the millimeter's scale.

2.
Phys Rev E ; 103(6-1): 063212, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271636

ABSTRACT

Microparticle suspensions in a polarity-switched discharge plasma of the Plasmakristall-4 facility on board the International Space Station exhibit string-like order. As pointed out in [Phys. Rev. Research 2, 033314 (2020)2643-156410.1103/PhysRevResearch.2.033314], the string-order is subject to evolution on the timescale of minutes at constant gas pressure and constant parameters of polarity switching. We perform a detailed analysis of this evolution using the pair correlations and length spectrum of the string-like clusters (SLCs). Average exponential decay rate of the SLC length spectrum is used as a measure of string order. The analysis shows that the improvement of the string-like order is accompanied by the decrease of the thickness of the microparticle suspension, microparticle number density, and total amount of microparticles in the field of view. This suggests that the observed long-term evolution of the string-like order is caused by the redistribution of the microparticles, which significantly modifies the plasma conditions.

3.
Opt Express ; 28(23): 33921-33936, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182871

ABSTRACT

The ideal laser source for nonlinear terahertz spectroscopy offers large versatility delivering both ultra-intense broadband single-cycle pulses and user-selectable multi-cycle pulses at narrow linewidths. Here we show a highly versatile terahertz laser platform providing single-cycle transients with tens of MV/cm peak field as well as spectrally narrow pulses, tunable in bandwidth and central frequency across 5 octaves at several MV/cm field strengths. The compact scheme is based on optical rectification in organic crystals of a temporally modulated laser beam. It allows up to 50 cycles and central frequency tunable from 0.5 to 7 terahertz, with a minimum width of 30 GHz, corresponding to the photon-energy width of ΔE=0.13 meV and the spectroscopic-wavenumber width of Δ(λ-1)=1.1 cm-1. The experimental results are excellently predicted by theoretical modelling. Our table-top source shows similar performances to that of large-scale terahertz facilities but offering in addition more versatility, multi-colour femtosecond pump-probe opportunities and ultralow timing jitter.

4.
Opt Express ; 27(13): 18296-18310, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31252775

ABSTRACT

The propagation of an optical discharge (OD) along hollow-core optical fibers (HCFs) is investigated experimentally. Silica-based revolver-type HCFs filled with atmospheric air were used as test samples. We observed that the average propagation velocity of an OD along the HCF (VAV) depends on the properties of the medium around the silica structure of the fiber. It is shown that the value of VAV changes by approximately a factor of three, depending on whether the optical discharge is moving along a polymer coated or uncoated fiber. The value of VAV practically does not change when the polymer is replaced by an immersion liquid (such as glycerol) or liquid gallium. By analyzing the destruction region's patterns that appear in the fiber cladding after an OD propagation, we propose the physical picture of the phenomenon.

5.
Phys Rev E ; 99(4-1): 043202, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108619

ABSTRACT

New data for the reflectivity of shock-compressed xenon plasmas at pressures of 10-12 GPa at large incident angles are presented. In addition, measurements have been performed at different densities. These data allow to analyze the free-electron density profile across the shock wave front. Assuming a Fermi-like density profile, the width of the front layer is inferred. The reflectivity coefficients for the s- and p-polarized waves are calculated. The influence of atoms, which was taken into account on the level of the collision frequency, proves to be essential for the understanding of the reflection process. Subsequently, a unique density profile is sufficient to obtain good agreement with the experimental data at different incident angles and at all investigated optical laser frequencies. Reflectivity measurements for different densities allow to determine the dependence of shock-front density profiles on the plasma parameters. As a result, it was found that the width of the front layer increases with decreasing density.

6.
Phys Rev Lett ; 120(8): 085704, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29543009

ABSTRACT

We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

7.
Opt Lett ; 42(23): 4889-4892, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29216136

ABSTRACT

The results of high-field terahertz transmission experiments on n-doped silicon (carrier concentration of 8.7×1016 cm-3) are presented. We use terahertz pulses with electric field strengths up to 3.1 MV cm-1 and a pulse duration of 700 fs. A huge transmittance enhancement of ∼90 times is observed with increasing of the terahertz electric field strengths within the range of 1.5-3.1 MV cm-1.

8.
Sci Rep ; 7(1): 15159, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123107

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

9.
Sci Rep ; 7(1): 2180, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28526843

ABSTRACT

The theoretical basis and experimental verification of resonant phenomena in the electromagnetic fields generated by displacement current in the near zone of dielectric ring is presented. According to the traditional viewpoint, the dielectric has an influence on the electric field inside resonator. To the contrary, we demonstrate that the dielectric ring exhibits magnetic properties at resonance. The sliding incidence of plane microwave on this weakly absorbing ring is shown to provide the sharp and deep resonance in the components of generated field; this low loss circuit is operating as a resonant dielectric magnetic dipole. Splitting and broadening of resonance in the pair of these dipoles dependent upon their mutual arrangement is recorded. The phase shift equal to π between the magnetic components of incident and generated wave indicating the formation of negative magnetic response is demonstrated. Perspectives of using of this simple sub wavelength resonant magnetic dipoles in the all-dielectric circuitry are discussed.

10.
Phys Rev E ; 94(3-1): 033204, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739834

ABSTRACT

We propose a method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a cloud, and it provides reasonably good accuracy. Based on this method, we investigate the particle density in a dust cloud realized in gas discharge plasma in the PK-3 Plus setup onboard the International Space Station. We find that the treated dust clouds are both anisotropic and inhomogeneous. One can isolate two regimes in which a stationary dust cloud can be observed. At low pressures, the particle density decreases monotonically with the increase of the distance from the discharge center; at higher pressures, the density distribution has a shallow minimum. Regardless of the regime, we detect a cusp of the distribution at the void boundary and a slowly varying density at larger distances (in the foot region). A theoretical interpretation of the obtained results is developed that leads to reasonable estimates of the densities for both the cusp and the foot. The modified ionization equation of state, which allows for violation of the local quasineutrality in the cusp region, predicts the spatial distributions of ion and electron densities to be measured in future experiments.

11.
Rev Sci Instrum ; 87(9): 093505, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782568

ABSTRACT

New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of µm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

12.
Opt Express ; 24(8): 7987-8012, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27137240

ABSTRACT

Template matching algorithms represent a viable tool to locate particles in optical images. A crucial factor of the performance of these methods is the choice of the similarity measure. Recently, it was shown in [Gao and Helgeson, Opt. Express 22 (2014)] that the correlation coefficient (CC) leads to good results. Here, we introduce the mutual information (MI) as a nonlinear similarity measure and compare the performance of the MI and the CC for different noise scenarios. It turns out that the mutual information leads to superior results in the case of signal dependent noise. We propose a novel approach to estimate the velocity of particles which is applicable in imaging scenarios where the particles appear elongated due to their movement. By designing a bank of anisotropic templates supposed to fit the elongation of the particles we are able to reliably estimate their velocity and direction of motion out of a single image.

13.
Article in English | MEDLINE | ID: mdl-25871225

ABSTRACT

The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a/aB--the ratio of the mean interparticle distance to the Bohr radius--approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N=33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4, and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5, both RPIMC and DPIMC are problematic due to the increased fermion sign problem.

14.
Opt Lett ; 39(23): 6632-5, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25490639

ABSTRACT

We report on high-field terahertz transients with 0.9-mJ pulse energy produced in a 400 mm² partitioned organic crystal by optical rectification of a 30-mJ laser pulse centered at 1.25 µm wavelength. The phase-locked single-cycle terahertz pulses cover the hard-to-access low-frequency range between 0.1 and 5 THz and carry peak fields of more than 42 MV/cm and 14 Tesla with the potential to reach over 80 MV/cm by choosing appropriate focusing optics. The scheme based on a Cr:Mg2SiO4 laser offers a high conversion efficiency of 3% using uncooled organic crystal. The collimated pump laser configuration provides excellent terahertz focusing conditions.

15.
J Appl Microbiol ; 116(5): 1129-36, 2014 May.
Article in English | MEDLINE | ID: mdl-24517235

ABSTRACT

AIM: To study the effects exerted by argon microwave nonthermal plasma (NTP) on cell wall-lacking Mollicutes bacteria. METHODS AND RESULTS: 10(8) CFU ml(-1) agar plated Mycoplasma hominis and Acholeplasma laidlawii were treated with the nonthermal microwave argon plasma for 30-300 s. The maximal 10- and 100-fold drop was observed for A. laidlawii and Myc. hominis, respectively. Similarly treated Escherichia coli and Staphylococcus aureus demonstrated the 10(5) and 10(3) drop, respectively. Removal of cholesterol affected resistance of A. laidlawii. 10 mmol l(-1) antioxidant butylated hydroxytoluene decreased mortality by a factor of 25-200. UV radiation alone caused 25-85% mortality in comparison with the whole NTP. Exogenously added hydrogen peroxide H2O2 did not cause mortality. NTP treatment of Myc. hominis triggered growth of microcolonies, which were several tenfold smaller than a typical colony. CONCLUSIONS: Despite the lack of cell wall, A. laidlawii and Myc. hominis were more resistant to argon microwave NTP than other tested bacteria. Mycoplasma hominis formed microcolonies upon NTP treatment. A role of UV and active species was demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY: The first study of NTP effects on Mollicutes revealed importance of a membrane composition for bacterial resistance to NTP. New specific Myc. hominis morphological forms were observed. The study confirmed importance of the concerted action of reactive oxygen species (ROS) with UV and other plasma bioactive agents for NTP bactericidal action.


Subject(s)
Acholeplasma laidlawii/drug effects , Anti-Bacterial Agents/pharmacology , Mycoplasma hominis/drug effects , Plasma Gases/pharmacology , Argon , Cholesterol/physiology , Microbial Viability/drug effects , Microwaves , Mycoplasma hominis/growth & development , Mycoplasma hominis/ultrastructure , Oxidants/pharmacology , Ultraviolet Rays
16.
Phys Rev Lett ; 111(12): 125004, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093269

ABSTRACT

String theory methods led to the hypothesis that the ratio of a shear viscosity coefficient to the volume density of entropy of any physical system has a lower bound. Systems with strong coupling have a small viscosity as compared to weakly coupled plasmas in which the viscosity is proportional to the mean free path. Here, we have estimated the fully ionized strongly coupled plasma viscosity based on the dynamic experimental data on electrical conductivity and have shown that the ratio of viscosity to entropy of the strongly coupled plasma is very close to that of the lower bound predicted by the string theory.

17.
Article in English | MEDLINE | ID: mdl-23848787

ABSTRACT

An influence of a high-voltage (3-17 kV) 20 ns pulse on a weakly-ionized low-pressure (0.1-10 Pa) capacitively coupled radiofrequency (RF) argon plasma is studied experimentally. The plasma evolution after pulse exhibits two characteristic regimes: a bright flash, occurring within 100 ns after the pulse (when the discharge emission increases by 2-3 orders of magnitude over the steady-state level), and a dark phase, lasting a few hundreds µs (when the intensity of the discharge emission drops significantly below the steady-state level). The electron density increases during the flash and remains very large at the dark phase. 1D3V particle-in-cell simulations qualitatively reproduce both regimes and allow for detailed analysis of the underlying mechanisms. It is found that the high-voltage nanosecond pulse is capable of removing a significant fraction of plasma electrons out of the discharge gap, and that the flash is the result of the excitation of gas atoms, triggered by residual electrons accelerated in the electric field of immobile bulk ions. The secondary emission from the electrodes due to vacuum UV radiation plays an important role at this stage. High-density plasma generated during the flash provides efficient screening of the RF field (which sustains the steady-state plasma). This leads to the electron cooling and, hence, onset of the dark phase.

18.
Article in English | MEDLINE | ID: mdl-23848790

ABSTRACT

We study the deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles. To solve this problem, we employ the Navier-Stokes equation for a compressible fluid with due regard for friction between dust particles and atoms of neutral gas. The solution shows that due to friction, the pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Measurement of such velocity makes it possible to estimate the static pressure inside the dust cloud.

19.
Article in English | MEDLINE | ID: mdl-23848791

ABSTRACT

We describe a series of experiments on dust particles' flows in a positive column of a horizontal dc discharge operating in laboratory and microgravity conditions. The main observation is that the particle flow velocities in laboratory experiments are systematically higher than in microgravity experiments for otherwise identical discharge conditions. The paper provides an explanation for this interesting and unexpected observation. The explanation is based on a physical model, which properly takes into account main plasma-particle interaction mechanisms relevant to the described experimental study. A comparison of experimentally measured particle velocities and those calculated using the proposed model demonstrates reasonable agreement, both in laboratory and microgravity conditions, in the entire range of discharge parameters investigated.

20.
Article in English | MEDLINE | ID: mdl-23410440

ABSTRACT

A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.


Subject(s)
Algorithms , Models, Chemical , Plasma Gases/chemistry , Rheology/methods , Computer Simulation , Electromagnetic Fields , Plasma Gases/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...