Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 144: 105993, 2023 08.
Article in English | MEDLINE | ID: mdl-37385128

ABSTRACT

Hydroxyapatite (HA) from bovine bones has been used as a biomaterial in dentistry due to its biocompatibility and bioactivity. However, dense HA bioceramics still present inadequate properties for applications that require high mechanical performance, such as infrastructure. Microstructural reinforcements and control of ceramic processing steps are methods to improve these shortcomings. The present study assessed the effects of polyvinyl butyral (PVB) addition in combination with two sintering methodologies (2-step and conventional), on the mechanical properties of polycrystalline bovine HA bioceramics. The samples were divided into four groups (with 15 samples per group): conventional sintering with binder (HBC) and without binder (HWC) and 2-step sintering with (HB2) and without binder (HW2). HA was extracted from bovine bones, turned into nanoparticles in a ball mill, and subjected to uniaxial and isostatic pressing into discs, according to ISO 6872 standards. All groups were characterized by x-ray diffractometry (XRD), differential thermal analysis (DTA) and Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and relative density. Besides, mechanical analyses (biaxial flexural strength (BFS) and modulus of elasticity) were also performed. The characterization results demonstrated that adding agglutinants or the sintering method did not affect HA's chemical and structural characteristics. Even so, the HWC group showed the highest mechanical values for BFS and modulus of elasticity being 109.0 (98.0; 117.0) MPa and 105.17 ± 14.65 GPa, respectively. The HA ceramics submitted to conventional sintering and without the addition of binders achieved better mechanical properties than the other groups. The impacts of each variable were discussed and correlated to the final microstructures and mechanical properties.


Subject(s)
Durapatite , Nanoparticles , Animals , Cattle , Durapatite/chemistry , Biocompatible Materials/chemistry , Spectroscopy, Fourier Transform Infrared , Ceramics/chemistry , Surface Properties , Materials Testing
2.
J Biomater Appl ; 37(9): 1632-1644, 2023 04.
Article in English | MEDLINE | ID: mdl-36916869

ABSTRACT

This study aimed to develop bone regenerative therapeutic strategies, based on the addition of bone marrow stromal cells (BMSC) on bioglass/collagen (BG/COL) scaffolds. For this purpose, an in vivo study was conducted using tissue response of the BG/COL scaffolds combined with BMSC in a critical-size defects. Wistar rats were submitted to the surgical procedure to perform the cranial critical size bone defects and distributed in four groups (20 animals per group): Control Group (CG) (rats submitted to the cranial bone defect surgery without treatment), Bioglass Group (BG) (rats treated with BG), BG/COL Group (rats treated with BG/COL) and Bioglass/Collagen and BMSC Group (BG/COL/BMSC) (rats treated with BG/COL scaffolds enriched with BMSCs). Animals were euthanized 15 and 30 days after surgery. Scanning electron microscopy, histopathological and immunohistochemistry analysis were used. SEM analysis demonstrated that porous scaffolds were obtained, and Col fibers were successfully impregnated to BG matrices. The implantation of the BMSC on BG/COL based scaffolds was effective in stimulating newly bone formation and produced an increased immunoexpression of markers related to the bone repair. These results highlight the potential of BG/COL scaffolds and BMSCs to be used as a therapeutic approach for bone regeneration.


Subject(s)
Mesenchymal Stem Cells , Tissue Scaffolds , Rats , Animals , Rats, Wistar , Collagen/pharmacology , Osteogenesis , Bone Regeneration , Models, Theoretical , Bone Marrow Cells , Tissue Engineering/methods
3.
J Bone Miner Metab ; 38(5): 639-647, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32303916

ABSTRACT

INTRODUCTION: Collagen from marine esponges has been used as a promising material for tissue engineering proposals. Similarly, photobiomodulation (PBM) is able of modulating inflammatory processes after an injury, accelerating soft and hard tissue healing and stimulating neoangiogenesis. However, the effects of the associated treatments on bone tissue healing have not been studied yet. In this context, the present study aimed to evaluate the biological temporal modifications (using two experimental periods) of marine sponge collagen or sponging (SPG) based scaffold and PBM on newly formed bone using a calvaria bone defect model. MATERIAL AND METHODS: Wistar rats were distributed into two groups: SPG or SPG/PBM and euthanized into two different experimental periods (15 and 45 days post-surgery). A cranial critical bone defect was used to evaluate the effects of the treatments. Histology, histomorfometry and immunohistological analysis were performed. RESULTS: Histological findings demonstrated that SPG/PBM-treated animals, 45 days post-surgery, demonstrated a higher amount of connective and newly formed bone tissue at the region of the defect compared to CG. Notwithstanding, no difference among groups were observed in the histomorphometry. Interestingly, for both anti-transforming growth factor-beta (TGF-ß) and anti-vascular endothelial growth factor (VEGF) immunostaining, higher values for SPG/PBM, at 45 days post-surgery could be observed. CONCLUSION: It can be concluded that the associated treatment can be considered as a promising therapeutical intervention.


Subject(s)
Aquatic Organisms/chemistry , Collagen/pharmacology , Low-Level Light Therapy , Skull/pathology , Tissue Scaffolds/chemistry , Wound Healing/drug effects , Animals , Disease Models, Animal , Male , Rats, Wistar , Skull/drug effects , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/metabolism
4.
J Mater Sci Mater Med ; 30(6): 64, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31127392

ABSTRACT

The combination of different biomaterials can be a promising intervention for the composites manufacture, mainly by adding functional and structural characteristics of each material and guarantee the advantages of the use of these composites. In this context, the aim of this study was to develop and evaluated the influence of the incorporation of marine spongin (SPG) into Biosilicate® (BS) in different proportions be used during bone repair. For this purpose, it was to develop and investigate different BS/SPG formulations for physico-chemical and morphological characteristics by pH, loss mass, Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) analysis. Additionally, the influence of these composites on cell viability, proliferation, and alkaline phosphatase (ALP) activity were investigated. The results revealed that the pH values of all BS groups (with or without SPG) increased over time. A significant mass loss was observed in all composites, mainly with higher SPG percentages. Additionaly, SEM micrographies demonstrated fibers of SPG into BS and material degradation over time. Moreover, FTIR spectral analysis revealed characteristic peaks of PMMA, BS, and SPG in BS/SPG composites. BS/SPG groups demonstrated a positive effect for fibroblast proliferation after 3 and 7 days of culture. Additionally, BS and BS/SPG formulations (at 10% and 20% of SPG) presented similar values of osteoblasts viability and proliferation after 7 days of culture. Furthermore, ALP activity demonstrated no significant difference between BS and BS/SPG scaffolds, at any composition. Based on the present in vitro results, it can be concluded that the incorporation of SPG into BS was possible and produced an improvement in the physical-chemical characteristics and in the biological performance of the graft especially the formulation with 80/20 and 90/10. Future research should focus on in vivo evaluations of this novel composite.


Subject(s)
Biocompatible Materials/chemistry , Glass/chemistry , Porifera/metabolism , 3T3 Cells , Alkaline Phosphatase/metabolism , Animals , Bone Substitutes/chemistry , Cell Line , Cell Proliferation , Cell Survival , Hydrogen-Ion Concentration , Materials Testing , Mice , Microscopy, Electron, Scanning , Osteoblasts/metabolism , Spectroscopy, Fourier Transform Infrared , Tissue Engineering/methods , Tissue Scaffolds
5.
Mar Biotechnol (NY) ; 21(1): 30-37, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30218326

ABSTRACT

Biomaterial-based bone grafts have an important role in the field of bone tissue engineering. One of the most promising classes of biomaterials is collagen, including the ones from marine biodiversity (in general, called spongin (SPG)). Also, hydroxyapatite (HA) has an important role in stimulating bone metabolism. Therefore, this work investigated the association of HA and SPG composites in order to evaluate their physico-chemical and morphological characteristics and their in vitro biological performance. For this, pre-set composite disks were evaluated by means of mass loss after incubation, pH, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and "in vitro" cell viability. pH measurements showed no statistical difference between groups. Moreover, a higher mass loss was observed for HA/SPG70/30 compared to the other groups for all experimental periods. Moreover, SEM representative micrographs showed the degradation of the samples with and without immersion. FTIR analysis demonstrated the absorption peaks for poly(methyl methacrylate) (PMMA), HA, and SPG. A higher L292 cell viability for control and PMMA was observed compared to HA and HA/SPG 90/10. Also, HA/SPG 70/30 showed higher cell viability compared to HA and HA/SPG 90/10 on days 3 and 7 days of culture. Furthermore, HA showed a significant lower MC3T3 cell viability compared to control and HA/SPG 70/30 on day 3 and no significant difference was observed between the composites in the last experimental period. Based on our investigations, it can be concluded that the mentioned composites were successfully obtained, presenting improved biological properties, especially the one mimicking the composition of bone (with 70% of HA and 30% of SPG). Consequently, these data highlight the potential of the introduction of SPG into HA to improve the performance of the graft for bone regeneration applications. Further long-term studies should be carried out to provide additional information concerning the late stages of material degradation and bone healing in the presence of HA/SPG.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Collagen/chemistry , Durapatite/chemistry , Polymethyl Methacrylate/chemistry , Tissue Scaffolds , Animals , Biocompatible Materials/pharmacology , Bone Substitutes/pharmacology , Bone and Bones/cytology , Cell Line , Cell Survival/drug effects , Collagen/pharmacology , Durapatite/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Hydrogen-Ion Concentration , Mice , NIH 3T3 Cells , Polymethyl Methacrylate/pharmacology , Porifera/chemistry , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...