Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 342: 139-148, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34678401

ABSTRACT

Robust and flexible continuous unit operations that enable the establishment of intensified bioprocesses is one of the most relevant trends in manufacturing of biopharmaceuticals, including virus-based products. Sulfated cellulose membrane adsorbers (SCMA) are one of the most promising matrices for chromatographic purification of virus particles, like influenza viruses. Here, a three 'column' periodical counter current set-up was used to continuously purify influenza A/PR/8/34 virus particles using SCMA in bind-elute mode. It was possible to recover 67.4% of the HA-activity and to remove 67.4% and 99.8% of the total protein and DNA, respectively. The performance of the continuous process operated over a total of 10 loops, was slightly inferior to was obtained in a comparable batch process. Nevertheless, it was possible to increase the effective usage of binding capacity to 80%, resulting on a productivity of 22.8 kHAU mlmemb-1 min-1. As a proof-of-principle, SCMA were successfully used as matrix for purification of cell-derived influenza virus particles, in continuous mode.


Subject(s)
Influenza A virus , Orthomyxoviridae , Cellulose , Chromatography, Affinity , Membranes
2.
J Chem Technol Biotechnol ; 93(7): 1988-1996, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30008506

ABSTRACT

BACKGROUND: Vaccines based on virus-like particles (VLPs) are an alternative to inactivated viral vaccines that combine good safety profiles with strong immunogenicity. In order to be economically competitive, efficient manufacturing is required, in particular downstream processing, which often accounts for major production costs. This study describes the optimization and establishment of a chromatography capturing technique using sulfated cellulose membrane adsorbers (SCMA) for purification of influenza VLPs. RESULTS: Using a design of experiments approach, the critical factors for SCMA performance were described and optimized. For optimal conditions (membrane ligand density: 15.4 µmol cm-2, salt concentration of the loading buffer: 24 mmol L-1 NaCl, and elution buffer: 920 mmol L-1 NaCl, as well as the corresponding flow rates: 0.24 and 1.4 mL min-1), a yield of 80% in the product fraction was obtained. No loss of VLPs was detected in the flowthrough fraction. Removal of total protein and DNA impurities were higher than 89% and 80%, respectively. CONCLUSION: Use of SCMA represents a significant improvement compared with conventional ion exchanger membrane adsorbers. As the method proposed is easily scalable and reduces the number of steps required compared with conventional purification methods, SCMA could qualify as a generic platform for purification of VLP-based influenza vaccines. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...