Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Infect Genet Evol ; 122: 105601, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830443

ABSTRACT

Toscana Virus (TosV) was firstly isolated from phlebotomine in our Institute about fifty years ago. Later, in 1984-1985, TosV infection, although asymptomatic in most cases, was shown to cause disease in humans, mainly fever and meningitis. By means of genetic analysis of part of M segment, we describe 3 new viral isolates obtained directly from cerebrospinal fluid or sera samples of patients diagnosed with TosV infection in July 2020 in Tuscany region. Phylogenesis was used to propose the clustering of TosV lineage A strains in 3 main groups, whereas deep mutational analysis based on 12 amino acid positions, allowed the identification of 9 putative strains. We discuss deep mutational analysis as a method to identify molecular signature of host adaptation and/or pathogenesis.


Subject(s)
Genome, Viral , Phylogeny , Sandfly fever Naples virus , Humans , Italy/epidemiology , Sandfly fever Naples virus/genetics , Sandfly fever Naples virus/isolation & purification , Sandfly fever Naples virus/classification , Evolution, Molecular , Genomics/methods , Male
2.
Viruses ; 16(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38675961

ABSTRACT

AIMS: To evaluate whether antibodies specific for the vaccinia virus (VV) are still detectable after at least 45 years from immunization. To confirm that VV-specific antibodies are endowed with the capacity to neutralize Mpox virus (MPXV) in vitro. To test a possible role of polyclonal non-specific activation in the maintenance of immunologic memory. METHODS: Sera were collected from the following groups: smallpox-vaccinated individuals with or without latent tuberculosis infection (LTBI), unvaccinated donors, and convalescent individuals after MPXV infection. Supernatant of VV- or MPXV-infected Vero cells were inactivated and used as antigens in ELISA or in Western blot (WB) analyses. An MPXV plaque reduction neutralization test (PRNT) was optimized and performed on study samples. VV- and PPD-specific memory T cells were measured by flow cytometry. RESULTS: None of the smallpox unvaccinated donors tested positive in ELISA or WB analysis and their sera were unable to neutralize MPXV in vitro. Sera from all the individuals convalescing from an MPXV infection tested positive for anti-VV or MPXV IgG with high titers and showed MPXV in vitro neutralization capacity. Sera from most of the vaccinated individuals showed IgG anti-VV and anti-MPXV at high titers. WB analyses showed that positive sera from vaccinated or convalescent individuals recognized both VV and MPXV antigens. Higher VV-specific IgG titer and specific T cells were observed in LTBI individuals. CONCLUSIONS: ELISA and WB performed using supernatant of VV- or MPXV-infected cells are suitable to identify individuals vaccinated against smallpox at more than 45 years from immunization and individuals convalescing from a recent MPXV infection. ELISA and WB results show a good correlation with PRNT. Data confirm that a smallpox vaccination induces a long-lasting memory in terms of specific IgG and that antibodies raised against VV may neutralize MPXV in vitro. Finally, higher titers of VV-specific antibodies and higher frequency of VV-specific memory T cells in LTBI individuals suggest a role of polyclonal non-specific activation in the maintenance of immunologic memory.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , B-Lymphocytes , Cross Reactions , Smallpox Vaccine , Vaccinia virus , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Smallpox Vaccine/immunology , B-Lymphocytes/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Cross Reactions/immunology , Vaccinia virus/immunology , Middle Aged , Immunologic Memory , Neutralization Tests , Smallpox/immunology , Smallpox/prevention & control , Animals , Male , T-Lymphocytes/immunology , Female , Enzyme-Linked Immunosorbent Assay , Orthopoxvirus/immunology , Vaccination , Chlorocebus aethiops , Adult , Lymphocyte Activation , Vero Cells
3.
Viruses ; 16(2)2024 01 24.
Article in English | MEDLINE | ID: mdl-38399952

ABSTRACT

The frequency of locally transmitted dengue virus (DENV) infections has increased in Europe in recent years, facilitated by the invasive mosquito species Aedes albopictus, which is well established in a large area of Europe. In Italy, the first indigenous dengue outbreak was reported in August 2020 with 11 locally acquired cases in the Veneto region (northeast Italy), caused by a DENV-1 viral strain closely related to a previously described strain circulating in Singapore and China. In this study, we evaluated the vector competence of two Italian populations of Ae. albopictus compared to an Ae. aegypti lab colony. We performed experimental infections using a DENV-1 strain that is phylogenetically close to the strain responsible for the 2020 Italian autochthonous outbreak. Our results showed that local Ae. albopictus is susceptible to infection and is able to transmit the virus, confirming the relevant risk of possible outbreaks starting from an imported case.


Subject(s)
Aedes , Dengue Virus , Dengue , Animals , Humans , Dengue/epidemiology , Disease Outbreaks
4.
Sci Rep ; 13(1): 12840, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553350

ABSTRACT

Early detection of pathogens in vectors is important in preventing the spread of arboviral diseases, providing a timely indicator of pathogen circulation before outbreaks occur. However, entomological surveillance may face logistical constraints, such as maintaining the cold chain, and resource limitations, such as the field and laboratory workload of mosquito processing. We propose an FTA card-based trapping system that aims to simplify both field and laboratory phases of arbovirus surveillance. We modified a BG-Sentinel trap to include a mosquito collection chamber and a sugar feeding source through an FTA card soaked in a long-lasting viscous solution of honey and hydroxy-cellulose hydrogel. The FTA card ensures environmental preservation of nucleic acids, allowing continuous collection and feeding activity of specimens for several days and reducing the effort required for viral detection. We tested the trap prototype during two field seasons (2019 and 2021) in North-eastern Italy and compared it to CDC-CO2 trapping applied in West Nile and Usutu virus regional surveillance. Collections by the BG-FTA approach detected high species diversity, including Culex pipiens, Aedes albopictus, Culex modestus, Anopheles maculipennis sensu lato and Ochlerotatus caspius. When used for two-days sampling, the BG-FTA trap performed equally to CDC also for the WNV-major vector Cx. pipiens. The FTA cards detected both WNV and USUV, confirming the reliability of this novel approach to detect viral circulation in infectious mosquitoes. We recommend this surveillance approach as a particularly useful alternative in multi-target surveillance, for sampling in remote areas and in contexts characterized by high mosquito densities and diversity.


Subject(s)
Aedes , Arbovirus Infections , Culex , Flavivirus , West Nile virus , Animals , Reproducibility of Results , Mosquito Vectors , Arbovirus Infections/diagnosis
5.
J Virol Methods ; 316: 114717, 2023 06.
Article in English | MEDLINE | ID: mdl-36972832

ABSTRACT

Yellow fever disease is a viral zoonosis that may result in a severe hemorrhagic disease. A safe and effective vaccine used in mass immunization campaigns has allowed control and mitigation against explosive outbreaks in endemic areas. Since the 1960's, re-emergent of the yellow fever virus has been observed. The timely implementation of control measures, to avoid or contain an ongoing outbreak requires rapid specific viral detection methods. Here a novel molecular assay, expected to detect all known yellow fever virus strains, is described. The method has demonstrated high sensitivity and specificity in real-time RT-PCR as well as in an endpoint RT-PCR set-up. Sequence alignment and phylogenetic analysis reveal that the amplicon resulting from the novel method covers a genomic region whose mutational profile is completely associated to the yellow fever viral lineages. Therefore, sequencing analysis of this amplicon allows for assignment of the viral lineage.


Subject(s)
Yellow Fever Vaccine , Yellow Fever , Humans , Yellow fever virus/genetics , Yellow Fever/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , Phylogeny
6.
Viruses ; 16(1)2023 12 28.
Article in English | MEDLINE | ID: mdl-38257751

ABSTRACT

Dengue (DENV) and Zika (ZIKV) viruses are mosquito-borne human pathogens. In Italy, the presence of the competent vector Aedes albopictus increases the risk of autochthonous transmission, and a national plan for arboviruses prevention, surveillance, and response (PNA 2020-2025) is in place. The results of laboratory diagnosis of both viruses by the National Reference Laboratory for arboviruses (NRLA) from November 2015 to November 2022 are presented. Samples from 655 suspected cases were tested by both molecular and serological assays. Virus and antibody kinetics, cross-reactivity, and diagnostic performance of IgM ELISA systems were analysed. Of 524 cases tested for DENV, 146 were classified as confirmed, 7 as probable, while 371 were excluded. Of 619 cases tested for ZIKV, 44 were classified as confirmed, while 492 were excluded. All cases were imported. Overall, 75.3% (110/146) of DENV and 50% (22/44) of ZIKV cases were confirmed through direct virus detection methods. High percentages of cross reactivity were observed between the two viruses. The median lag time from symptoms onset to sample collection was 7 days for both DENV molecular (range 0-20) and NS1 ELISA (range 0-48) tests, with high percentages of positivity also after 7 days (39% and 67%, respectively). For ZIKV, the median lag time was 5 days (range 0-22), with 16% positivity after 7 days. Diagnostic performance was assessed with negative predictive values ranging from 92% to 95% for the anti-DENV systems, and of 97% for the ZIKV one. Lower positive predictive values were seen in the tested population (DENV: 55% to 91%, ZIKV: 50%). DENV and ZIKV diagnosis by molecular test is the gold standard, but sample collection time is a limitation. Serological tests, including Plaque Reduction Neutralization Test, are thus necessary. Co-circulation and cross-reactivity between the two viruses increase diagnostic difficulty. Continuous evaluation of diagnostic strategies is essential to improve laboratory testing.


Subject(s)
Aedes , Dengue , Zika Virus Infection , Zika Virus , Humans , Animals , Zika Virus Infection/diagnosis , Mosquito Vectors , Italy/epidemiology , Dengue/diagnosis , Dengue/epidemiology
7.
Euro Surveill ; 27(36)2022 09.
Article in English | MEDLINE | ID: mdl-36082685

ABSTRACT

As in 2018, when a large West Nile virus (WNV) epidemic occurred, the 2022 vector season in Italy was marked by an early onset of WNV circulation in mosquitoes and birds. Human infections were limited until early July, when we observed a rapid increase in the number of cases. We describe the epidemiology of human infections and animal and vector surveillance for WNV and compare the more consolidated data of June and July 2022 with the same period in 2018.


Subject(s)
Culicidae , West Nile Fever , West Nile virus , Animals , Birds , Humans , Italy/epidemiology , Mosquito Vectors , West Nile Fever/epidemiology , West Nile Fever/veterinary
8.
Viruses ; 14(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36146865

ABSTRACT

Several flaviviruses such as Hepatitis C virus, West Nile virus, Dengue virus and Japanese Encephalitis virus exploit the raft platform to enter host cells whereas the involvement of lipid rafts in Zika virus-host cell interaction has not yet been demonstrated. Zika virus disease is caused by a flavivirus transmitted by Aedes spp. Mosquitoes, although other mechanisms such as blood transfusion, sexual and maternal-fetal transmission have been demonstrated. Symptoms are generally mild, such as fever, rash, joint pain and conjunctivitis, but neurological complications, including Guillain-Barré syndrome, have been associated to this viral infection. During pregnancy, it can cause microcephaly and other congenital abnormalities in the fetus, as well as pregnancy complications, representing a serious health threat. In this study, we show for the first time that Zika virus employs cell membrane lipid rafts as a portal of entry into Vero cells. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) hampers a microbe-host cell interaction through the disruption of lipid raft architecture. Here, we found that Amphotericin B by the same mechanism of action inhibits both Zika virus cell entry and replication. These data encourage further studies on the off-label use of Amphotericin B in Zika virus infections as a new and alternate antiviral therapy.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Amphotericin B/metabolism , Amphotericin B/therapeutic use , Animals , Antifungal Agents/metabolism , Antifungal Agents/therapeutic use , Antiviral Agents/pharmacology , Chlorocebus aethiops , Female , Humans , Membrane Lipids/metabolism , Membrane Microdomains , Pregnancy , Vero Cells
9.
Access Microbiol ; 4(4): 000340, 2022.
Article in English | MEDLINE | ID: mdl-35812708

ABSTRACT

We report the molecular evidence of dengue virus (DENV) and chikungunya virus (CHIKV) infection in symptomatic individuals in Cameroon and Gabon, respectively. Arthropod-borne viruses (arboviruses) are distributed in the tropical or subtropical regions, with DENV having the highest burden. The morbidity and mortality related to arboviral diseases raise the concern of timely and efficient surveillance and care. Our aim was to assess the circulation of arboviruses [DENV, CHIKV, Zika virus (ZIKV)] among febrile patients in Dschang (West Cameroon) and Kyé-ossi (South Cameroon, border with Gabon and Equatorial Guinea). Dried blood spots were collected from 601 consenting febrile patients, and 194 Plasmodium spp.-negative samples were tested for the molecular detection of cases of DENV, CHIKV and ZIKV infection. Overall, no case of ZIKV infection was found, whereas one case of DENV infection and one case of CHIKV infection were detected in Dschang and Kyé-ossi, respectively, with the CHIKV-infected patient being resident in Gabon. Our findings suggest the need to establish an active surveillance of arbovirus transmission in Cameroon and bordering countries.

10.
Viruses ; 14(3)2022 03 16.
Article in English | MEDLINE | ID: mdl-35337026

ABSTRACT

BACKGROUND: The latest European Chikungunya virus (CHIKV) outbreak occurred in Italy in 2017, in the municipalities of Anzio and Rome (Lazio Region), with a secondary outbreak in the Calabrian Region. Most CHIKV infections are symptomatic but about 15% of people who acquire the infection may be asymptomatic. A retrospective study was conducted with the aim of assessing the prevalence of recent/ongoing CHIKV infections on the blood donor population in the Lazio Region, during the 2017 outbreak (including in the period before it was detected). METHODS: The study was conducted on 4595 plasma samples from donors who donated in 14 different Blood Establishments in the Lazio Region, in the period June-November 2017. A total of 389 of these samples were collected in provinces not affected by the outbreak and were used as negative controls. All samples were tested for IgM detection by the use of an ELISA test, and positive samples were tested for confirmation through the use of a PRNT. Molecular tests were performed on sera that were found to be IgM-positive or borderline. RESULTS: A total of 41 (0.89%) blood donors tested positive for IgM. None of these positive IgM ELISA results was confirmed either by PRNT or by molecular tests. CONCLUSIONS: Our study has shown no evidence of recent/ongoing CHIKV infection in blood donors of the affected area.


Subject(s)
Chikungunya Fever , Antibodies, Viral , Blood Donors , Disease Outbreaks , Humans , Immunoglobulin M , Retrospective Studies
11.
Parasit Vectors ; 14(1): 76, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33482887

ABSTRACT

BACKGROUND: On 11 March 2020, the World Health Organisation (WHO) declared the coronavirus disease 2019 (COVID-19) outbreak to be a pandemic. As the mosquito season progressed, the understandable concern that mosquitoes could transmit the virus began to increase among the general public and public health organisations. We have investigated the vector competence of Culex pipiens and Aedes albopictus, the two most common species of vector mosquitoes in Europe, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the very unusual feeding behaviour of Ae. albopictus, we also evaluated the role of this mosquito in a potential mechanical transmission of the virus. METHODS: For the vector competence study, mosquitoes were allowed to take several infectious blood meals. The mosquitoes were then collected and analysed at 0, 3, 7 and 10 days post-feeding. For the mechanical transmission test, Ae. albopictus females were allowed to feed for a short time on a feeder containing infectious blood and then on a feeder containing virus-free blood. Both mosquitoes and blood were tested for viral presence. RESULTS: Culex pipiens and Ae. albopictus were found not be competent vectors for SARS-CoV-2, and Ae. albopictus was unable to mechanically transmit the virus. CONCLUSIONS: This is the first study to show that the most common species of vector mosquitoes in Europe do not transmit SARS-CoV-2 and that Ae. albopictus is unable to mechanically transmit the virus from a positive host to a healthy host through host-feeding.


Subject(s)
Aedes/virology , COVID-19/transmission , Culex/virology , Mosquito Vectors/virology , SARS-CoV-2/physiology , Animals , Blood/virology , Europe , Female , RNA, Viral/analysis , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Sheep/blood
13.
J Med Virol ; 91(9): 1577-1583, 2019 09.
Article in English | MEDLINE | ID: mdl-31090222

ABSTRACT

The emergence of Zika virus in the Americas has caused an increase of babies born with microcephaly or other neurological malformations. The differential diagnosis of Zika infection, particularly serological diagnosis, is an important but complex issue. In this study, we describe clinical manifestations of 94 suspected cases of congenital Zika from Bahia state, Brazil, and the results of serological tests performed on children and/or their mothers at an average of 71 days after birth. Anti-Zika immunoglobulin M (IgM) antibodies were detected in 44.4% and in 7.1% of samples from mothers and children, respectively. Nearly all the IgM, and 92% of immunoglobulin G positive results were confirmed by neutralization test. Zika specific neutralizing antibodies were detected in as much as 90.4% of the cases. Moreover, dengue specific neutralizing antibodies were detected in 79.0% of Zika seropositive mothers. In conclusion, Zika IgM negative results should be considered with caution, due to a possible rapid loss of sensitivity after birth, while the NS1-based Zika IgM enzyme-linked immunosorbent assay test we have used has demonstrated to be highly specific. In a high percentage of cases, Zika specific neutralizing antibodies were detected, which are indicative of a past Zika infection, probably occurred during pregnancy in this population.


Subject(s)
Infectious Disease Transmission, Vertical/statistics & numerical data , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission , Zika Virus , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Brazil/epidemiology , Child, Preschool , Diagnostic Imaging , Humans , Immunoglobulin M/blood , Infant , Infant, Newborn , Neutralization Tests , Phenotype , Public Health Surveillance , Serologic Tests , Zika Virus Infection/diagnosis
14.
Open Forum Infect Dis ; 6(1): ofy321, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30697571

ABSTRACT

BACKGROUND: Chikungunya virus is an emerging mosquito-borne pathogen with a wide global distribution. With the severe morbidity that it causes, chikungunya virus is a major public health problem in the affected areas and poses a considerable risk for unaffected areas hosting competent vector populations. In the summer of 2017, Italy experienced a chikungunya virus outbreak that spread in the Lazio region and caused a secondary outbreak in the Calabrian village of Guardavalle, with a final case number of 436. The causative strain was recognized as an Indian Ocean lineage (IOL) virus. METHODS: To understand the underlying genetic and molecular features of the outbreak virus, viruses from mosquito pools and clinical samples were isolated in cell culture and subjected to whole-genome sequencing and genetic analyses. RESULTS: All 8 characterized genomes shared a high sequence identity. A distinct substitution pattern in the Italian 2017 viruses (including mutations in E1, E2, and nsP4) was partly shared with the Pakistani 2016 outbreak viruses. Evolutionary analyses indicate that these 2 recent outbreaks and several geographically widely distributed, travel-associated viruses form a cluster of rapidly emerging Indian-origin IOL viruses. CONCLUSIONS: Our analyses show that the 2017 Italian outbreak virus belongs to a cluster of novel IOL chikungunya viruses originating in India. Their emergence calls for enhanced monitoring and strengthened preparedness measures, including vector control programs and raised awareness among general practitioners in countries potentially at risk.

16.
Euro Surveill ; 23(22)2018 05.
Article in English | MEDLINE | ID: mdl-29871722

ABSTRACT

We compared the vector competence of an Italian population of Aedes albopictus for two strains of chikungunya virus (CHIKV), with and without E1:A226V mutation, responsible for outbreaks in 2007 in the Emilia Romagna region and 2017 in the Lazio and Calabria regions, respectively. Ae. albopictus showed similar vector competence for both viral strains indicating that E1:A226V mutation is not exclusively responsible for ability of CHIKV to replicate well in this mosquito species.


Subject(s)
Aedes/virology , Alphavirus Infections/transmission , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/pathogenicity , Mosquito Vectors/virology , Mutation/genetics , Aedes/physiology , Alphavirus Infections/epidemiology , Animals , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Chikungunya virus/isolation & purification , Disease Outbreaks , Disease Vectors , Humans , Indian Ocean , Italy/epidemiology , Mosquito Vectors/physiology , RNA, Viral/analysis , Species Specificity
17.
J Med Virol ; 90(10): 1666-1668, 2018 10.
Article in English | MEDLINE | ID: mdl-29797606

ABSTRACT

A collection of 3069 human sera collected in the area of the municipality of Modena, Emilia Romagna, Italy, was retrospectively investigated for specific antibodies against Usutu (USUV) and West Nile viruses (WNV). All the samples resulting positive using a preliminary screening test were analyzed with the plaque reduction neutralization test. Overall, 24 sera were confirmed as positive for USUV (0.78%) and 13 for WNV (0.42%). The results suggest that in 2012, USUV was circulating more than WNV in North-eastern Italy.


Subject(s)
Antibodies, Viral/blood , Flavivirus/immunology , West Nile virus/immunology , Antibodies, Neutralizing/blood , Blood Donors , Humans , Italy/epidemiology , Neutralization Tests , Retrospective Studies , Seroepidemiologic Studies
18.
PLoS Negl Trop Dis ; 12(4): e0006435, 2018 04.
Article in English | MEDLINE | ID: mdl-29672511

ABSTRACT

BACKGROUND: Chikungunya virus (CHIKV) is an emerging arbovirus, belonging to the Togaviridae family, Alphavirus genus, transmitted by Aedes spp. mosquitoes. Since 2007, two different CHIKV strains (E1-226A and E1-226V) have been responsible for outbreaks in European countries, including Italy, sustained by Ae. albopictus mosquitoes. FINDINGS: In this study, we assessed the susceptibility to the CHIKV E1-226V, strain responsible for the Italian 2007 outbreak, of eight Ae. albopictus populations collected in Northern, Central, Southern, and Island Italy, by experimental infections. Vector competence was evaluated by estimating infection, dissemination, and transmission rates (IR, DR, TR), through detection of the virus in the bodies, legs plus wings, and saliva, respectively. Additionally, vertical transmission was evaluated by the detection of the virus in the offspring. The results of our study demonstrated that the Italian populations of Ae. albopictus tested were susceptible to CHIKV infection, and can disseminate the virus outside the midgut barrier with high values of IR and DR. Viral infectious RNA was detected in the saliva of three populations from Central, Southern, and Island Italy, also tested for TR and population transmission rate (PTR) values. No progeny of the first and second gonotrophic cycle were positive for CHIKV. CONCLUSIONS: This study strongly confirms the role of Ae. albopictus as a potential CHIKV vector in Italy. This may represent a threat, especially considering both the high density of this species, which is widespread throughout the country, and the increasing number of cases of imported arboviruses.


Subject(s)
Aedes/physiology , Chikungunya Fever/virology , Chikungunya virus/physiology , Disease Outbreaks , Infectious Disease Transmission, Vertical , Mosquito Vectors/physiology , Aedes/virology , Animals , Chikungunya Fever/epidemiology , Chikungunya virus/genetics , Europe , Female , Humans , Italy/epidemiology , Male , Mosquito Vectors/virology , Saliva/virology , Zoonoses
19.
Euro Surveill ; 22(39)2017 Sep.
Article in English | MEDLINE | ID: mdl-29019306

ABSTRACT

An autochthonous chikungunya outbreak is ongoing near Anzio, a coastal town in the province of Rome. The virus isolated from one patient and mosquitoes lacks the A226V mutation and belongs to an East Central South African strain. As of 20 September, 86 cases are laboratory-confirmed. The outbreak proximity to the capital, its late summer occurrence, and diagnostic delays, are favouring transmission. Vector control, enhanced surveillance and restricted blood donations are being implemented in affected areas.


Subject(s)
Aedes/virology , Chikungunya Fever/diagnosis , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Disease Outbreaks , Animals , Antibodies, Viral , Chikungunya Fever/epidemiology , Chikungunya Fever/prevention & control , Disease Outbreaks/prevention & control , Female , Humans , Insect Vectors/virology , Italy/epidemiology , Phylogeny , Polymerase Chain Reaction , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...