Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 9(12): 6926-6934, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37824106

ABSTRACT

This work reports the design and validation of an innovative automatic photo-cross-linking device for robotic-based in situ bioprinting. Photo-cross-linking is the most promising polymerization technique when considering biomaterial deposition directly inside a physiological environment, typical of the in situ bioprinting approach. The photo-cross-linking device was designed for the IMAGObot platform, a 5-degree-of-freedom robot re-engineered for in situ bioprinting applications. The system consists of a syringe pump extrusion module equipped with eight light-emitting diodes (LEDs) with a 405 nm wavelength. The hardware and software of the robot were purposely designed to manage the LEDs switching on and off during printing. To minimize the light exposure of the needle, thus avoiding its clogging, only the LEDs opposite the printing direction are switched on to irradiate the newly deposited filament. Moreover, the LED system can be adjusted in height to modulate substrate exposure. Different scaffolds were bioprinted using a GelMA-based hydrogel, varying the printing speed and light distance from the bed, and were characterized in terms of swelling and mechanical properties, proving the robustness of the photo-cross-linking system in various configurations. The system was finally validated onto anthropomorphic phantoms (i.e., a human humerus head and a human hand with defects) featuring complex nonplanar surfaces. The designed system was successfully used to fill these anatomical defects, thus resulting in a promising solution for in situ bioprinting applications.


Subject(s)
Bioprinting , Robotic Surgical Procedures , Robotics , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Bioprinting/methods , Printing, Three-Dimensional , Gelatin/chemistry
2.
Bioengineering (Basel) ; 10(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37237631

ABSTRACT

This study aims to critically analyse the workflow of the in situ bioprinting procedure, presenting a simulated neurosurgical case study, based on a real traumatic event, for collecting quantitative data in support of this innovative approach. After a traumatic event involving the head, bone fragments may have to be removed and a replacement implant placed through a highly demanding surgical procedure in terms of surgeon dexterity. A promising alternative to the current surgical technique is the use of a robotic arm to deposit the biomaterials directly onto the damaged site of the patient following a planned curved surface, which can be designed pre-operatively. Here we achieved an accurate planning-patient registration through pre-operative fiducial markers positioned around the surgical area, reconstructed starting from computed tomography images. Exploiting the availability of multiple degrees of freedom for the regeneration of complex and also overhanging parts typical of anatomical defects, in this work the robotic platform IMAGObot was used to regenerate a cranial defect on a patient-specific phantom. The in situ bioprinting process was then successfully performed showing the great potential of this innovative technology in the field of cranial surgery. In particular, the accuracy of the deposition process was quantified, as well as the duration of the whole procedure was compared to a standard surgical practice. Further investigations include a biological characterisation over time of the printed construct as well as an in vitro and in vivo analysis of the proposed approach, to better analyse the biomaterial performances in terms of osteo-integration with the native tissue.

3.
Mater Sci Eng C Mater Biol Appl ; 124: 112057, 2021 May.
Article in English | MEDLINE | ID: mdl-33947551

ABSTRACT

Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed.


Subject(s)
Bioprinting , Heart , Ink , Printing, Three-Dimensional , Tissue Engineering
4.
Biofabrication ; 13(3)2021 04 08.
Article in English | MEDLINE | ID: mdl-33561850

ABSTRACT

Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10µm in diameter and ∼2µm thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.


Subject(s)
Bioprinting , Endothelial Cells , Humans , Ink , Permeability , Printing, Three-Dimensional , Reproducibility of Results , Tissue Scaffolds
5.
Biofabrication ; 12(2): 025013, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31929117

ABSTRACT

Bone is a highly vascularized tissue, in which vascularization and mineralization are concurrent processes during skeletal development. Indeed, both components should be included in any reliable and adherent in vitro model platform for the study of bone physiology and pathogenesis of skeletal disorders. To this end, we developed an in vitro vascularized bone model, using a gelatin-nanohydroxyapatite (gel-nHA) three-dimensional (3D) bioprinted scaffold. First, we seeded human mesenchymal stem cells (hMSCs) on the scaffold, which underwent osteogenic differentiation for 2 weeks. Then, we included lentiviral-GFP transfected human umbilical vein endothelial cells (HUVECs) within the 3D bioprinted scaffold macropores to form a capillary-like network during 2 more weeks of culture. We tested three experimental conditions: condition 1, bone constructs with HUVECs cultured in 1:1 osteogenic medium (OM): endothelial medium (EM); condition 2, bone constructs without HUVECs cultured in 1:1 OM:EM; condition 3: bone construct with HUVECs cultured in 1:1 growth medium:EM. All samples resulted in engineered bone matrix. In conditions 1 and 3, HUVECs formed tubular structures within the bone constructs, with the assembly of a complex capillary-like network visible by fluorescence microscopy in the live tissue and histology. CD31 immunostaining confirmed significant vascular lumen formation. Quantitative real-time PCR was used to quantify osteogenic differentiation and endothelial response. Alkaline phosphatase and runt-related transcription factor 2 upregulation confirmed early osteogenic commitment of hMSCs. Even when OM was removed under condition 3, we observed clear osteogenesis, which was notably accompanied by upregulation of osteopontin, vascular endothelial growth factor, and collagen type I. These findings indicate that we have successfully realized a bone model with robust vascularization in just 4 weeks of culture and we highlighted how the inclusion of endothelial cells more realistically supports osteogenesis. The approach reported here resulted in a biologically inspired in vitro model of bone vascularization, simulating de novo morphogenesis of capillary vessels occurring during tissue development.


Subject(s)
Bone and Bones/blood supply , Human Umbilical Vein Endothelial Cells/cytology , Mesenchymal Stem Cells/cytology , Osteogenesis , Tissue Engineering/methods , Alkaline Phosphatase/metabolism , Bioprinting , Bone Development , Bone and Bones/metabolism , Cell Differentiation , Cells, Cultured , Coculture Techniques , Collagen Type I/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism
6.
Article in English | MEDLINE | ID: mdl-31380365

ABSTRACT

The aim of this study is the analysis and characterization of a hydrolyzed keratin-based biomaterial and its processing using electrospinning technology to develop in vitro tissue models. This biomaterial, extracted from poultry feathers, was mixed with type A porcine gelatin and cross-linked with γ-glycidyloxy-propyl-trimethoxy-silane (GPTMS) to be casted initially in the form of film and characterized in terms of swelling, contact angle, mechanical properties, and surface charge density. After these chemical-physical characterizations, electrospun nanofibers structures were manufactured and their mechanical properties were evaluated. Finally, cell response was analyzed by testing the efficacy of keratin-based structures in sustaining cell vitality and proliferation over 4 days of human epithelial, rat neuronal and human primary skin fibroblast cells.

7.
Int J Artif Organs ; 42(10): 586-594, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31204554

ABSTRACT

One of the main challenges of the interface-tissue engineering is the regeneration of diseased or damaged interfacial native tissues that are heterogeneous both in composition and in structure. In order to achieve this objective, innovative fabrication techniques have to be investigated. This work describes the design, fabrication, and validation of a novel mixing system to be integrated into a double-extruder bioprinter, based on an ultrasonic probe included into a mixing chamber. To validate the quality and the influence of mixing time, different nanohydroxyapatite-gelatin samples were printed. Mechanical characterization, micro-computed tomography, and thermogravimetric analysis were carried out. Samples obtained from three-dimensional bioprinting using the mixing chamber were compared to samples obtained by deposition of the same final solution obtained by manually operated ultrasound probe, showing no statistical differences. Results obtained from samples characterization allow to consider the proposed mixing system as a promising tool for the fabrication of graduated structures which are increasingly being used in interface-tissue engineering.


Subject(s)
Bioprinting , Tissue Engineering/methods , Tissue Scaffolds , Ultrasonics , Durapatite , Gelatin , Humans , Printing, Three-Dimensional , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...