Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 57(19): 2321-2333.e9, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36220082

ABSTRACT

Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.


Subject(s)
Cell Polarity , Endothelial Cells , Adherens Junctions/metabolism , Animals , Cell Movement/physiology , Cell Polarity/physiology , Endothelial Cells/metabolism , Mice , Morphogenesis , Retina/metabolism
2.
Cell Rep Methods ; 1(5): 100068, 2021 09 27.
Article in English | MEDLINE | ID: mdl-35474672

ABSTRACT

Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immunolabeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-protein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribution variation, allowing for the characterization of their localization patterns. Furthermore, we show that our method can be applied to physiological systems such as skeletal muscle fibers.


Subject(s)
Muscle Fibers, Skeletal , RNA , RNA/genetics , In Situ Hybridization, Fluorescence/methods , RNA, Messenger/genetics , Muscle Fibers, Skeletal/metabolism , Protein Transport
3.
Elife ; 82019 06 27.
Article in English | MEDLINE | ID: mdl-31246175

ABSTRACT

Morphogenesis of hierarchical vascular networks depends on the integration of multiple biomechanical signals by endothelial cells, the cells lining the interior of blood vessels. Expansion of vascular networks arises through sprouting angiogenesis, a process involving extensive cell rearrangements and collective cell migration. Yet, the mechanisms controlling angiogenic collective behavior remain poorly understood. Here, we show this collective cell behavior is regulated by non-canonical Wnt signaling. We identify that Wnt5a specifically activates Cdc42 at cell junctions downstream of ROR2 to reinforce coupling between adherens junctions and the actin cytoskeleton. We show that Wnt5a signaling stabilizes vinculin binding to alpha-catenin, and abrogation of vinculin in vivo and in vitro leads to uncoordinated polarity and deficient sprouting angiogenesis in Mus musculus. Our findings highlight how non-canonical Wnt signaling coordinates collective cell behavior during vascular morphogenesis by fine-tuning junctional mechanocoupling between endothelial cells.


Subject(s)
Cell Movement , Endothelial Cells/physiology , Neovascularization, Physiologic , Wnt Signaling Pathway , Wnt-5a Protein/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , Mice , Protein Binding , Vinculin/metabolism , alpha Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...