Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(25): 17569-17576, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867581

ABSTRACT

Assessing the accuracy of first-principles computational approaches is instrumental to predict electronic excitations in metal nanoclusters with quantitative confidence. Here we describe a validation study on the optical response of a set of monolayer-protected clusters (MPC). The photoabsorption spectra of Ag25(DMBT)18-, Ag24Pt(DMBT)182- and Au24Pt(SC4H9)18, where DMBT is 2,4-dimethylbenzenethiolate and SC4H9 is n-butylthiolate, have been obtained at low temperature and compared with accurate TDDFT calculations. An excellent match between theory and experiment, with typical deviations of less than 0.1 eV, was obtained, thereby validating the accuracy and reliability of the proposed computational framework. Moreover, an analysis of the TDDFT simulations allowed us to ascribe all relevant spectral features to specific transitions between occupied/virtual orbital pairs. The doping effect of Pt on the optical response of these ultrasmall MPC systems was identified and discussed.

2.
J Comput Chem ; 45(19): 1657-1666, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38551316

ABSTRACT

Time-dependent density functional theory (TDDFT) simulations are conducted on a series of chiral gold/silver alloy nanowires to explore whether silver doping can produce an enhancement of circular dichroism at the plasmon resonance in these systems, and to identify the quantum-mechanical origin of the observed effects. We find a strong plasmonic dichroism when one or two helixes of gold atoms are substituted by silver in a linear chiral nanotube, whose pure gold counterpart does not display any plasmonic dichroism, and we rationalize this finding in terms of "decoupling" the destructive interference of excitations in the pure gold nanotube via alloying. However, further attempts to increase the plasmonic dichroism by considering multi-shell gold nanowires in which one entire shell is doped with silver did not produce the desired effect, but rather a decrease in circular dichroism. We show that this latter result is due to a more severe destructive interference in the dipole excitation contributions, and suggest that further amplification should be possible in principle by properly tuning simultaneously the nanowire structure and chemical ordering.

3.
J Phys Chem C Nanomater Interfaces ; 127(47): 22880-22888, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38053625

ABSTRACT

In order to investigate Li2S as a potential protective coating for lithium anode batteries using superionic electrolytes, we need to describe reactions and transport for systems at scales of >10,000 atoms for time scales beyond nanoseconds, which is most impractical for quantum mechanics (QM) calculations. To overcome this issue, here, we first report the development of the reactive analytical force field (ReaxFF) based on density functional theory (DFT) calculations on model systems at the PBE0/TZVP and M062X/TZVP levels. Then, we carry out reactive molecular dynamics simulations (RMD) for up to 20 ns to investigate the diffusion mechanisms in bulk Li2S as a function of vacancy density, determining the activation barrier for diffusion and conductivity. We show that RMD predictions for diffusion and conductivity are comparable to experiments, while results on model systems are consistent with and validated by short (10-100 ps) ab initio molecular dynamics (AIMD). This new ReaxFF for Li2S systems enables practical RMD on spatial scales of 10-100 nm (10,000 to 10 million atoms) for the time scales of 20 ns required to investigate predictively the interfaces between electrodes and electrolytes, electrodes and coatings, and coatings and electrolytes during the charging and discharging processes.

4.
Nanoscale ; 15(48): 19709-19716, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38044676

ABSTRACT

We investigated carbon aerogel samples with super low densities of 0.013 g cm-3 (graphite is 2.5) and conducted compression experiments showing a very low yield stress of 5-8 kPa. To understand the atomistic mechanisms operating in these super low density aerogels, we present a computational study of the mechanical response of very low-density amorphous carbonaceous materials. We start from our previously derived atomistic models (based on the DynReaxMas method) with a density of 0.16 g cm-3 representing the core regions of carbon aerogels. We considered three different phases exhibiting either a fiber-like clump morphology interconnected with string-like units or a more reticulated framework. We subjected these phases to compression and shear deformations and analyzed the resulting plastic response via an inherent-structure protocol. Strikingly, we find that these materials possess shear plastic relaxation modes with extremely low values of yield stress, negligible with respect to the finite values predicted outside this "zero-stress" region. This is followed by a succession of two additional regimes with increasing yield stress values. Our analysis of the atomistic relaxation mechanisms finds that these modes have a collective and cooperative character, taking the form of nanoscopic shear bands within the clumps. These findings rationalize our experimental observations of very low-stress plastic deformation modes in carbon aerogels, providing the first steps for developing a predictive multi-scale modeling of the mechanical properties of aerogel materials.

5.
ACS Catal ; 13(20): 13484-13505, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37881789

ABSTRACT

In this work, we investigated cyclohexane oxidative dehydrogenation (ODH) catalyzed by cobalt ferrite nanoparticles supported on reduced graphene oxide (RGO). We aim to identify the active sites that are specifically responsible for full and partial dehydrogenation using advanced spectroscopic techniques such as X-ray photoelectron emission microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) along with kinetic analysis. Spectroscopically, we propose that Fe3+/Td sites could exclusively produce benzene through full cyclohexane dehydrogenation, while kinetic analysis shows that oxygen-derived species (O*) are responsible for partial dehydrogenation to form cyclohexene in a single catalytic sojourn. We unravel the dynamic cooperativity between octahedral and tetrahedral sites and the unique role of the support in masking undesired active (Fe3+/Td) sites. This phenomenon was strategically used to control the abundance of these species on the catalyst surface by varying the particle size and the wt % content of the nanoparticles on the RGO support in order to control the reaction selectivity without compromising reaction rates which are otherwise extremely challenging due to the much favorable thermodynamics for complete dehydrogenation and complete combustion under oxidative conditions.

6.
J Phys Chem A ; 127(44): 9244-9257, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37906956

ABSTRACT

The Resolution of Identity (RI) technique has been employed to speed up the use of hybrid exchange-correlation (xc) functionals at the TDDFT level using the Hybrid Diagonal Approximation. The RI has been implemented within the polTDDFT algorithm (a complex damped polarization method) in the AMS/ADF suite of programs. A speedup factor of 30 has been obtained with respect to a previous numerical implementation, albeit with the same level of accuracy. Comparison of TDDFT simulations with the experimental photoabsorption spectra of the cluster series Au8n+4(SR)4n+8(n = 3-6; R = C6H5) showed the excellent accuracy and efficiency of the method. Results were compared with those obtained via the more simplified and computationally cheaper TDDFT+TB and sTDDFT methods. The present method represents an accurate as well as computationally affordable approach to predict photoabsorption spectra of complex species, realizing an optimal compromise between accuracy and computational efficiency, and is suitable for applications to large metal clusters with sizes up to several hundreds of atoms.

7.
ACS Nano ; 17(12): 11481-11491, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37288973

ABSTRACT

The water-soluble glutathione-protected [Au25(GSH)18]-1 nanocluster was investigated by integrating several methodologies such as molecular dynamics simulations, essential dynamics analysis, and state-of-the-art time-dependent density functional theory calculations. Fundamental aspects such as conformational, weak interactions and solvent effects, especially hydrogen-bonds, were included and found to play a fundamental role in assessing the optical response of this system. Our analysis demonstrated not only that the electronic circular dichroism is extremely sensitive to the solvent presence but also that the solvent itself plays an active role in the optical activity of such system, forming a chiral solvation shell around the cluster. Our work demonstrates a successful strategy to investigate in detail chiral interfaces between metal nanoclusters and their environments, applicable, e.g., to chiral electronic interactions between clusters and biomolecules.

8.
Adv Mater ; 35(14): e2209371, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36644893

ABSTRACT

Monolayer MoS2 has attracted significant attention owing to its excellent performance as an n-type semiconductor from the transition metal dichalcogenide (TMDC) family. It is however strongly desired to develop controllable synthesis methods for 2D p-type MoS2 , which is crucial for complementary logic applications but remains difficult. In this work, high-quality NbS2 -MoS2 lateral heterostructures are synthesized by one-step metal-organic chemical vapor deposition (MOCVD) together with monolayer MoS2 substitutionally doped by Nb, resulting in a p-type doped behavior. The heterojunction shows a p-type transfer characteristic with a high on/off current ratio of ≈104 , exceeding previously reported values. The band structure through the NbS2 -MoS2 heterojunction is investigated by density functional theory (DFT) and quantum transport simulations. This work provides a scalable approach to synthesize substitutionally doped TMDC materials and provides an insight into the interface between 2D metals and semiconductors in lateral heterostructures, which is imperative for the development of next-generation nanoelectronics and highly integrated devices.

13.
Faraday Discuss ; 242(0): 174-192, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36196677

ABSTRACT

We present a computational study of the energetics and mechanisms of oxidation of Pt-Mn systems. We use slab models and simulate the oxidation process over the most stable (111) facet at a given Pt2Mn composition to make the problem computationally affordable, and combine Density-Functional Theory (DFT) with neural network potentials and metadynamics simulations to accelerate the mechanistic search. We find, first, that Mn has a strong tendency to alloy with Pt. This tendency is optimally realized when Pt and Mn are mixed in the bulk, but, at a composition in which the Mn content is high enough such as for Pt2Mn, Mn atoms will also be found in the surface outmost layer. These surface Mn atoms can dissociate O2 and generate MnOx species, transforming the surface-alloyed Mn atoms into MnOx surface oxide structures supported on a metallic framework in which one or more vacancy sites are simultaneously created. The thus-formed vacancies promote the successive steps of the oxidation process: the vacancy sites can be filled by surface oxygen atoms, which can then interact with Mn atoms in deeper layers, or subsurface Mn atoms can intercalate into interstitial sites. Both these steps facilitate the extraction of further bulk Mn atoms into MnOx oxide surface structures, and thus the progress of the oxidation process, with typical rate-determining energy barriers in the range 0.9-1.0 eV.

14.
ACS Catal ; 12(15): 9058-9073, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35966604

ABSTRACT

Spinel ferrites, especially Nickel ferrite, NiFe2O4, and Cobalt ferrite, CoFe2O4, are efficient and promising anode catalyst materials in the field of electrochemical water splitting. Using density functional theory, we extensively investigate and quantitatively model the mechanism and energetics of the oxygen evolution reaction (OER) on the (001) facets of their inverse-spinel structure, thought as the most abundant orientations under reaction conditions. We catalogue a wide set of intermediates and mechanistic pathways, including the lattice oxygen mechanism (LOM) and adsorbate evolution mechanism (AEM), along with critical (rate-determining) O-O bond formation barriers and transition-state structures. In the case of NiFe2O4, we predict a Fe-site-assisted LOM pathway as the preferred OER mechanism, with a barrier (ΔG ⧧) of 0.84 eV at U = 1.63 V versus SHE and a turnover frequency (TOF) of 0.26 s-1 at 0.40 V overpotential. In the case of CoFe2O4, we find that a Fe-site-assisted LOM pathway (ΔG ⧧ = 0.79 eV at U = 1.63 V vs SHE, TOF = 1.81 s-1 at 0.40 V overpotential) and a Co-site-assisted AEM pathway (ΔG ⧧ = 0.79 eV at bias > U = 1.34 V vs SHE, TOF = 1.81 s-1 at bias >1.34 V) could both play a role, suggesting a coexistence of active sites, in keeping with experimental observations. The computationally predicted turnover frequencies exhibit a fair agreement with experimentally reported data and suggest CoFe2O4 as a more promising OER catalyst than NiFe2O 4 in the pristine case, especially for the Co-site-assisted OER pathway, and may offer a basis for further progress and optimization.

15.
J Phys Chem A ; 126(35): 5890-5899, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36001802

ABSTRACT

A time-dependent density functional theory (TDDFT) computational approach is employed to study the optical coupling between a plasmonic system (a Ag50 nanorod) and a fluorescent dye (BODIPY). It is found that the BODIPY dye can interact with a plasmonic system in a rather different and selective way according to the mutual orientation of the fragments. Indeed, (i) the plasmon excitation turns out to be sensitive to the presence of the BODIPY transition and (ii) this can lead to amplify or suppress the resonance accordingly to the relative orientation of the corresponding transition dipoles. To understand the coupling mechanism, we analyze the shape of the induced density in real space and the Individual Component Map of the Oscillator Strength (ICM-OS) plots and achieve a simple rationalization and insight on the origin and features of the coupling. The resulting possibility of understanding plasmon/fluorophore interactions by simple qualitative arguments opens the way to a rational design of hybrid (plasmon + dye) systems with the desired optical behavior.

16.
J Phys Chem Lett ; 13(34): 8047-8054, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35994432

ABSTRACT

X-ray photoelectron spectroscopy (XPS) is a powerful surface analysis technique widely applied in characterizing the solid electrolyte interphase (SEI) of lithium metal batteries. However, experiment XPS measurements alone fail to provide atomic structures from a deeply buried SEI, leaving vital details missing. By combining hybrid ab initio and reactive molecular dynamics (HAIR) and machine learning (ML) models, we present an artificial intelligence ab initio (AI-ai) framework to predict the XPS of a SEI. A localized high-concentration electrolyte with a Li metal anode is simulated with a HAIR scheme for ∼3 ns. Taking the local many-body tensor representation as a descriptor, four ML models are utilized to predict the core level shifts. Overall, extreme gradient boosting exhibits the highest accuracy and lowest variance (with errors ≤ 0.05 eV). Such an AI-ai model enables the XPS predictions of ten thousand frames with marginal cost.

17.
Phys Chem Chem Phys ; 24(20): 12083-12115, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35502724

ABSTRACT

Ultrasmall clusters of subnanometer size can possess unique and even unexpected physical and chemical propensities which make them interesting in various fields of basic science and for potential applications, such as catalysis, photocatalysis, electrocatalysis, and optical and chemical sensors, just to name a few examples. These small particles often offer the tunability of their performance in an atom-by-atom fashion and an economic atom-efficient use of the metal loading. In this paper we review recent progress in the characterization and theory of well-defined subnanometer clusters in catalytic processes, and discuss their optical properties and stability, along with the potential of the size-selected clusters for the understanding of catalytic processes and for the development of new classes of catalysts.

18.
Acc Chem Res ; 55(8): 1124-1134, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35387450

ABSTRACT

The Haber-Bosch (HB) process is the primary chemical synthesis technique for industrial production of ammonia (NH3) for manufacturing nitrate-based fertilizer and as a potential hydrogen carrier. The HB process alone is responsible for over 2% of all global energy usage to produce more than 160 million tons of NH3 annually. Iron catalysts are utilized to accelerate the reaction, but high temperatures and pressures of atmospheric nitrogen gas (N2) and hydrogen gas (H2) are required. A great deal of research has aimed at increased performance over the last century, but the rate of progress has been slow. This Account focuses on determining the atomic-level reaction mechanism for HB synthesis of NH3 on the Fe catalysts used in industry and how to use this knowledge to suggest greatly improved catalysts via a novel paradigm of catalyst rational design.We determined the full reaction mechanism on the two most active surfaces for the HB process, Fe(111) and Fe(211)R. We used density functional theory (DFT) to predict the free-energy barriers for all 12 important reactions and the 34 most important 2 × 2 surface configurations. Then we incorporated the mechanism into kinetic Monte Carlo (kMC) simulations run for several hours of real time to predict turnover frequencies (TOFs). The predicted TOFs are within experimental error, indicating that the predicted barriers are within 0.04 eV of experiment.With this level of accuracy, we are poised to use DFT to improve the catalyst. Rather than forming bulk alloys with uniform concentration, we aimed at finding additives that strongly prefer near-surface sites so that minor amounts of the additive might lead to dramatic improvements. However, even for a single additive, the combinations of surface species and reactions multiplies significantly, with ∼48 reaction steps to examine and nearly 100 surface configurations per 2 × 2 site. To make it practical to examine tens of dopant candidates, we developed the hierarchical high-throughput catalysis screening (HHTCS) approach, which we applied to both the Fe(111) and Fe(211) surfaces. For HHTCS, we identified the most important 4 reaction steps out of 12 for the two surfaces to examine >50 dopant cases, where we required performance at each step no worse than for pure Fe. With HHTCS, the computational cost is about 1% of that for doing the full reaction mechanism, allowing us to do ≈50 cases in about 1/2 the time it took to do pure Fe(111). The new leads identified with HHTCS are then validated with full mechanistic studies.For Fe(111), we predict three high-performance dopants that strongly prefer the second layer: Co with a rate 8 times higher, Ni with a rate 16 times higher, and Si with a rate 43 times higher, at 400 °C and 20 atm. We also found four dopants that strongly prefer the top layer and improve performance: Pt or Rh 3 times faster and Pd or Cu 2 times faster. For Fe(211), the best dopant was found to be second-layer Co with a rate 3 times faster than that for the undoped surface.The DFT/kMC data were used to predict reshaping of the catalyst particles under reaction conditions and how to tune dopant content so as to maximize catalytic area and thus activity. Finally, we show how to validate our mechanistic modeling via a comparison between theoretical and experimental operando spectroscopic signatures.


Subject(s)
Ammonia , Hydrogen , Ammonia/chemistry , Catalysis , Kinetics , Oxidation-Reduction
19.
Molecules ; 26(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834052

ABSTRACT

We report a computational study and analysis of the optical absorption processes of Ag20 and Au20 clusters deposited on the magnesium oxide (100) facet, both regular and including point defects. Ag20 and Au20 are taken as models of metal nanoparticles and their plasmonic response, MgO as a model of a simple oxide support. We consider oxide defects both on the oxygen anion framework (i.e., a neutral oxygen vacancy) and in the magnesium cation framework (i.e., replacing Mg++ with a transition metal: Cu++ or Co++). We relax the clusters' geometries via Density-Functional Theory (DFT) and calculate the photo-absorption spectra via Time-Dependent DFT (TDDFT) simulations on the relaxed geometries. We find that the substrate/cluster interaction induces a broadening and a red-shift of the excited states of the clusters, phenomena that are enhanced by the presence of an oxygen vacancy and its localized excitations. The presence of a transition-metal dopant does not qualitatively affect the spectral profile. However, when it lies next to an oxygen vacancy for Ag20, it can strongly enhance the component of the cluster excitations perpendicular to the surface, thus favoring charge injection.

20.
Phys Chem Chem Phys ; 23(40): 23075-23089, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34613320

ABSTRACT

We propose the Augmented Grouping Approach (AugGA) and its deployment in the Augmented Grouping GO (AugGGO) scheme, for an efficient exploration of the chemical ordering (or compositional structure) of multi-component (alloyed) nanoparticles. The approach is based on a 'grouping' strategy (previously proposed for high-symmetry structures) by which the number of compositional degrees of freedom of the system is decreased by defining sets of atoms (groups, or orbits, or shells) that are constrained to be populated by the same element. Three fundamental advances are here included with respect to previous proposals: (i) groups are defined on the basis of descriptors (no point-group symmetry is assumed), (ii) bulk groups can exploit general chemical ordering patterns taken from databases, and (iii) sub-grouping is realized via a multi-descriptor strategy (here using two basic descriptors: the atomic energy and a few types of geometry patterns). The AugGGO approach is applied to two prototypical examples of binary nanoalloys: Pd-Pt and Ag-Cu, with a size between ≈500 and ≈1300 atoms, in different configurations, and the convex hull of the mixing energy as a function of composition is derived. It is shown how the three advances here proposed decisively extend the power and scope of the grouping approach: (i) making it applicable to any generic structural framework, (ii) achieving a thorough sampling of the core regions of nanoparticles, and (iii) catching exotic/unexpected chemical ordering arrangements, at a computational cost which is 1-2 orders of magnitude smaller than that of traditional Monte Carlo single-exchange techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...