Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
JCO Precis Oncol ; 8: e2400270, 2024 May.
Article in English | MEDLINE | ID: mdl-38820502

Subject(s)
Humans
2.
J Natl Cancer Inst ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569880

ABSTRACT

BACKGROUND: A large well-annotated recent international cohort of Li-Fraumeni (LFS) patients with early-stage breast cancer (BC) was examined for shared features. METHODS: This multicentre cohort study included females with a germline TP53 pathogenic or likely pathogenic variant and nonmetastatic BC diagnosed between 2002-2022. Clinical and genetic data were obtained from institutional registries and clinical charts. Descriptive statistics were utilized to summarize proportions and differences were assessed by Chi square or Wilcoxon rank sum tests. Metachronous contralateral breast cancer (CBC) risk, radiation-induced sarcoma risk, and recurrence-free survival (RFS) were analyzed by Kaplan-Meier methodology. RESULTS: Among 227 females who met study criteria, the median age of first BC diagnosis was 37 years (range 21-71), 11.9% presented with bilateral synchronous BC and 18.1% had ductal carcinoma in situ (DCIS) only. In total, 166 (73.1%) underwent mastectomies including 67 bilateral mastectomies as first BC surgery. Among those with retained breast tissue, CBC rate was 25.3% at 5-years. Among 186 invasive tumors, 72.1% were stages I-II, 48.9% node-negative, and the most common subtypes were HR+/HER2- (40.9%) and HR+/HER2 + (34.4%). At a median follow-up of 69.9 months (IQR 32.6-125.9), invasive HR+/HER2- disease had the highest recurrence risk among the subtypes (5-year RFS 61.1%, p = .0012). Among those who received radiation therapy (n = 79), the 5-year radiation-induced sarcoma rate was 4.8%. CONCLUSION: We observed high rates of DCIS, HR+ and HER2+ breast cancers, with a worse outcome in the HR+/HER2- luminal tumors despite appropriate treatment. Confirmation of these findings in further studies could have implications for BC care in LFS.

3.
JCO Precis Oncol ; 8: e2300453, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412388

ABSTRACT

PURPOSE: Establishing accurate age-related penetrance figures for the broad range of cancer types that occur in individuals harboring a pathogenic germline variant in the TP53 gene is essential to determine the most effective clinical management strategies. These figures also permit optimal use of cosegregation data for classification of TP53 variants of unknown significance. Penetrance estimation can easily be affected by bias from ascertainment criteria, an issue not commonly addressed by previous studies. MATERIALS AND METHODS: We performed a maximum likelihood penetrance estimation using full pedigree data from a multicenter study of 146 TP53-positive families, incorporating adjustment for the effect of ascertainment and population-specific background cancer risks. The analysis included pedigrees from Australia, Spain, and United States, with phenotypic information for 4,028 individuals. RESULTS: Core Li-Fraumeni syndrome (LFS) cancers (breast cancer, adrenocortical carcinoma, brain cancer, osteosarcoma, and soft tissue sarcoma) had the highest hazard ratios of all cancers analyzed in this study. The analysis also detected a significantly increased lifetime risk for a range of cancers not previously formally associated with TP53 pathogenic variant status, including colorectal, gastric, lung, pancreatic, and ovarian cancers. The cumulative risk of any cancer type by age 50 years was 92.4% (95% CI, 82.2 to 98.3) for females and 59.7% (95% CI, 39.9 to 81.3) for males. Females had a 63.3% (95% CI, 35.6 to 90.1) cumulative risk of developing breast cancer by age 50 years. CONCLUSION: The results from maximum likelihood analysis confirm the known high lifetime risk for the core LFS-associated cancer types providing new risk estimates and indicate significantly increased lifetime risks for several additional cancer types. Accurate cancer risk estimates will help refine clinical recommendations for TP53 pathogenic variant carriers and improve TP53 variant classification.


Subject(s)
Breast Neoplasms , Li-Fraumeni Syndrome , Male , Female , Humans , United States , Middle Aged , Li-Fraumeni Syndrome/diagnosis , Li-Fraumeni Syndrome/genetics , Genes, p53/genetics , Pedigree , Tumor Suppressor Protein p53/genetics , Genetic Predisposition to Disease/genetics , Breast Neoplasms/genetics , Risk Factors
4.
Hum Mol Genet ; 33(8): 724-732, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38271184

ABSTRACT

Since first publication of the American College of Medical Genetics and Genomics/Association for Medical Pathology (ACMG/AMP) variant classification guidelines, additional recommendations for application of certain criteria have been released (https://clinicalgenome.org/docs/), to improve their application in the diagnostic setting. However, none have addressed use of the PS4 and PP4 criteria, capturing patient presentation as evidence towards pathogenicity. Application of PS4 can be done through traditional case-control studies, or "proband counting" within or across clinical testing cohorts. Review of the existing PS4 and PP4 specifications for Hereditary Cancer Gene Variant Curation Expert Panels revealed substantial differences in the approach to defining specifications. Using BRCA1, BRCA2 and TP53 as exemplar genes, we calibrated different methods proposed for applying the "PS4 proband counting" criterion. For each approach, we considered limitations, non-independence with other ACMG/AMP criteria, broader applicability, and variability in results for different datasets. Our findings highlight inherent overlap of proband-counting methods with ACMG/AMP frequency codes, and the importance of calibration to derive dataset-specific code weights that can account for potential between-dataset differences in ascertainment and other factors. Our work emphasizes the advantages and generalizability of logistic regression analysis over simple proband-counting approaches to empirically determine the relative predictive capacity and weight of various personal clinical features in the context of multigene panel testing, for improved variant interpretation. We also provide a general protocol, including instructions for data formatting and a web-server for analysis of personal history parameters, to facilitate dataset-specific calibration analyses required to use such data for germline variant classification.


Subject(s)
Genetic Variation , Neoplasms , Humans , Genetic Variation/genetics , Genetic Testing/methods , Genome, Human , Phenotype , Genes, Neoplasm , Neoplasms/genetics
5.
J Med Genet ; 61(5): 483-489, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38160042

ABSTRACT

BACKGROUND: BRCA1/2 testing is crucial to guide clinical decisions in patients with hereditary breast/ovarian cancer, but detection of variants of uncertain significance (VUSs) prevents proper management of carriers. The ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) BRCA1/2 Variant Curation Expert Panel (VCEP) has recently developed BRCA1/2 variant classification guidelines consistent with ClinGen processes, specified against the ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular-Pathology) classification framework. METHODS: The ClinGen-approved BRCA1/2-specified ACMG/AMP classification guidelines were applied to BRCA1/2 VUSs identified from 2011 to 2022 in a series of patients, retrieving information from the VCEP documentation, public databases, literature and ENIGMA unpublished data. Then, we critically re-evaluated carrier families based on new results and checked consistency of updated classification with main sources for clinical interpretation of BRCA1/2 variants. RESULTS: Among 166 VUSs detected in 231 index cases, 135 (81.3%) found in 197 index cases were classified by applying BRCA1/2-specified ACMG/AMP criteria: 128 (94.8%) as Benign/Likely Benign and 7 (5.2%) as Pathogenic/Likely Pathogenic. The average time from the first report as 'VUS' to classification using this approach was 49.4 months. Considering that 15 of these variants found in 64 families had already been internally reclassified prior to this work, this study provided 121 new reclassifications among the 151 (80.1%) remaining VUSs, relevant to 133/167 (79.6%) families. CONCLUSIONS: These results demonstrated the effectiveness of new BRCA1/2 ACMG/AMP classification guidelines for VUS classification within a clinical cohort, and their important clinical impact. Furthermore, they suggested a cadence of no more than 3 years for regular review of VUSs, which however requires time, expertise and resources.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Genetic Variation , Humans , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Genetic Testing/methods
6.
Genome Med ; 15(1): 74, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37723522

ABSTRACT

BACKGROUND: Many families and individuals do not meet criteria for a known hereditary cancer syndrome but display unusual clusters of cancers. These families may carry pathogenic variants in cancer predisposition genes and be at higher risk for developing cancer. METHODS: This multi-centre prospective study recruited 195 cancer-affected participants suspected to have a hereditary cancer syndrome for whom previous clinical targeted genetic testing was either not informative or not available. To identify pathogenic disease-causing variants explaining participant presentation, germline whole-genome sequencing (WGS) and a comprehensive cancer virtual gene panel analysis were undertaken. RESULTS: Pathogenic variants consistent with the presenting cancer(s) were identified in 5.1% (10/195) of participants and pathogenic variants considered secondary findings with potential risk management implications were identified in another 9.7% (19/195) of participants. Health economic analysis estimated the marginal cost per case with an actionable variant was significantly lower for upfront WGS with virtual panel ($8744AUD) compared to standard testing followed by WGS ($24,894AUD). Financial analysis suggests that national adoption of diagnostic WGS testing would require a ninefold increase in government annual expenditure compared to conventional testing. CONCLUSIONS: These findings make a case for replacing conventional testing with WGS to deliver clinically important benefits for cancer patients and families. The uptake of such an approach will depend on the perspectives of different payers on affordability.


Subject(s)
Neoplastic Syndromes, Hereditary , Humans , Prospective Studies , Oncogenes , Genetic Testing , Germ Cells
7.
J Med Genet ; 60(12): 1215-1217, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37536919

ABSTRACT

The gene-disease relationship for CHEK2 remains listed as 'Li-Fraumeni syndrome 2' in public resources such as OMIM and MONDO, despite published evidence to the contrary, causing frustration among Li-Fraumeni syndrome (LFS) clinical experts. Here, we compared personal cancer characteristics of 2095 CHEK2 and 248 TP53 pathogenic variant carriers undergoing multigene panel testing at Ambry Genetics against 15 135 individuals with no known pathogenic variant. Our results from a within-cohort logistic regression approach highlight obvious differences between clinical presentation of TP53 and CHEK2 pathogenic variant carriers, with no evidence of CHEK2 being associated with any of the TP53-related core LFS cancers. These findings emphasise the need to replace 'Li-Fraumeni syndrome 2' as the CHEK2-associated disease name, thereby limiting potential confusion.


Subject(s)
Li-Fraumeni Syndrome , Humans , Li-Fraumeni Syndrome/epidemiology , Li-Fraumeni Syndrome/genetics , Tumor Suppressor Protein p53/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Checkpoint Kinase 2/genetics
8.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36332611

ABSTRACT

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Subject(s)
Databases, Genetic , Laboratories , Humans , Genetic Variation , Australia , Genetic Testing
9.
Genome Med ; 14(1): 51, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585550

ABSTRACT

BACKGROUND: Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are uncertain. METHODS: We analyzed data on 59,639 breast cancer cases and 53,165 controls from studies participating in the Breast Cancer Association Consortium BRIDGES project. We sampled training (80%) and validation (20%) sets to analyze rare missense variants in ATM (1146 training variants), BRCA1 (644), BRCA2 (1425), CHEK2 (325), and PALB2 (472). We evaluated breast cancer risks according to five in silico prediction-of-deleteriousness algorithms, functional protein domain, and frequency, using logistic regression models and also mixture models in which a subset of variants was assumed to be risk-associated. RESULTS: The most predictive in silico algorithms were Helix (BRCA1, BRCA2 and CHEK2) and CADD (ATM). Increased risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) and BRCA1 (RING and BRCT domains). For ATM, BRCA1, and BRCA2, data were compatible with small subsets (approximately 7%, 2%, and 0.6%, respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI (1.47-2.08)) than CHEK2 protein truncating variants. There was little evidence for an association with risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set. CONCLUSIONS: These results will inform risk prediction models and the selection of candidate variants for functional assays and could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Case-Control Studies , Female , Genetic Predisposition to Disease , Humans , Mutation, Missense
10.
Hum Mutat ; 43(9): 1249-1258, 2022 09.
Article in English | MEDLINE | ID: mdl-35451539

ABSTRACT

The large majority of germline alterations identified in the DNA mismatch repair (MMR) gene PMS2, a low-penetrance gene for the cancer predisposition Lynch syndrome, represent variants of uncertain significance (VUS). The inability to classify most VUS interferes with personalized healthcare. The complete in vitro MMR activity (CIMRA) assay, that only requires sequence information on the VUS, provides a functional analysis-based quantitative tool to improve the classification of VUS in MMR proteins. To derive a formula that translates CIMRA assay results into the odds of pathogenicity (OddsPath) for VUS in PMS2 we used a set of clinically classified PMS2 variants supplemented by inactivating variants that were generated by an in cellulo genetic screen, as proxies for cancer-predisposing variants. Validation of this OddsPath revealed high predictive values for benign and predisposing PMS2 VUS. We conclude that the OddsPath provides an integral metric that, following the other, higher penetrance, MMR proteins MSH2, MSH6 and MLH1 can be incorporated as strong evidence type into the upcoming criteria for MMR gene VUS classification of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP).


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Mismatch Repair Endonuclease PMS2 , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , DNA-Binding Proteins/genetics , Genetic Testing/methods , Humans , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics
11.
Hum Mutat ; 43(7): 882-888, 2022 07.
Article in English | MEDLINE | ID: mdl-35191126

ABSTRACT

For genes with reliable estimates of disease risk associated with loss-of-function variants, case-control data can be used to estimate the proportion of variants of typical risk effect for defined groups of variants, of relevance for variant classification. A calculation was derived for a maximum likelihood estimate of the proportion of pathogenic variants of typical effect from case-control data and applied to rare variant counts for ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, and RAD51D from published breast cancer studies: BEACCON (5770 familial cases and 5741 controls) and breast cancer risk after diagnostic sequencing (60,466 familial and population-based cases and 53,461 controls). There was significant evidence of pathogenic variants among rare noncoding variants, in particular deeper intronic variants, for BRCA1 (13%, p = 8.3 × 10-7 ), BRCA2 (6%, p = 0.016) and PALB2 (13%, p = 0.001). The estimated proportion of pathogenic missense variants varied markedly between genes, generally with enrichment in familial cases, for example, 9% for BRCA2 versus 60%-90% for CHEK2. Stratifying missense variants by position indicated that, for most genes, location within a functional domain significantly predicted pathogenicity, whereas location outside domains provided robust evidence against pathogenicity. Our approach provides novel insights into the spectrum of pathogenic variants of specific breast cancer genes and has wider application to inform gene-focused specifications of American College of Medical Genetics and Genomics (ACMG)/Association of Molecular Pathology (AMP) codes for variant curation.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Calibration , Genetic Predisposition to Disease , Likelihood Functions , Pathology, Molecular
12.
Genet Med ; 24(3): 673-680, 2022 03.
Article in English | MEDLINE | ID: mdl-34906512

ABSTRACT

PURPOSE: Some variants identified by multigene panel testing of DNA from blood present with low variant allele fraction (VAF), often a manifestation of clonal hematopoiesis. Research has shown that the proportion of variants with low VAF is especially high in TP53, the Li-Fraumeni syndrome gene. Based on the hypothesis that variants with low VAF are positively selected as drivers of clonal hematopoiesis, we investigated the use of VAF as a predictor of TP53 germline variant pathogenicity. METHODS: We used data from 260,681 TP53 variants identified at 2 laboratories to compare the distribution of pathogenic and benign variants at different VAF intervals. RESULTS: Likelihood ratios toward pathogenicity associated with a VAF < 26% equated to the American College of Medical Genetics/Association of Molecular Pathology strong strength level and were applicable for 1 in 5 variants of unknown significance. CONCLUSION: In conclusion, detection of variants with low VAF in blood can be considered an in vivo functional assay to aid assessment of TP53 variant pathogenicity.


Subject(s)
Clonal Hematopoiesis , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Humans , Tumor Suppressor Protein p53/genetics
13.
Hum Mutat ; 42(10): 1351-1361, 2021 10.
Article in English | MEDLINE | ID: mdl-34273903

ABSTRACT

Multigene panel testing has led to an increase in the number of variants of uncertain significance identified in the TP53 gene, associated with Li-Fraumeni syndrome. We previously developed a quantitative model for predicting the pathogenicity of P53 missense variants based on the combination of calibrated bioinformatic information and somatic to germline ratio. Here, we extended this quantitative model for the classification of P53 predicted missense variants by adding new pieces of evidence (personal and family history parameters, loss-of-function results, population allele frequency, healthy individual status by age 60, and breast tumor pathology). We also annotated which missense variants might have an effect on splicing based on bioinformatic predictions. This updated model plus annotation led to the classification of 805 variants into a clinically relevant class, which correlated well with existing ClinVar classifications, and resolved a large number of conflicting and uncertain classifications. We propose this model as a reliable approach to TP53 germline variant classification and emphasize its use in contributing to optimize TP53-specific ACMG/AMP guidelines.


Subject(s)
Genes, p53 , Li-Fraumeni Syndrome , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Li-Fraumeni Syndrome/genetics , Middle Aged , Mutation, Missense , Tumor Suppressor Protein p53/genetics
14.
N Engl J Med ; 384(5): 428-439, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33471991

ABSTRACT

BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking. METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity. RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants. CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Mutation, Missense , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Female , Humans , Logistic Models , Middle Aged , Odds Ratio , Risk , Sequence Analysis, DNA , Young Adult
15.
Hum Mutat ; 42(3): 223-236, 2021 03.
Article in English | MEDLINE | ID: mdl-33300245

ABSTRACT

Germline pathogenic variants in TP53 are associated with Li-Fraumeni syndrome, a cancer predisposition disorder inherited in an autosomal dominant pattern associated with a high risk of malignancy, including early-onset breast cancers, sarcomas, adrenocortical carcinomas, and brain tumors. Intense cancer surveillance for individuals with TP53 germline pathogenic variants is associated with reduced cancer-related mortality. Accurate and consistent classification of germline variants across clinical and research laboratories is important to ensure appropriate cancer surveillance recommendations. Here, we describe the work performed by the Clinical Genome Resource TP53 Variant Curation Expert Panel (ClinGen TP53 VCEP) focused on specifying the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification to the TP53 gene. Specifications were developed for 20 ACMG/AMP criteria, while nine were deemed not applicable. The original strength level for the 10 criteria was also adjusted due to current evidence. Use of TP53-specific guidelines and sharing of clinical data among experts and clinical laboratories led to a decrease in variants of uncertain significance from 28% to 12% compared with the original guidelines. The ClinGen TP53 VCEP recommends the use of these TP53-specific ACMG/AMP guidelines as the standard strategy for TP53 germline variant classification.


Subject(s)
Genetic Variation , Li-Fraumeni Syndrome , Tumor Suppressor Protein p53 , Genetic Testing , Germ Cells , Humans , Li-Fraumeni Syndrome/diagnosis , Li-Fraumeni Syndrome/genetics , Tumor Suppressor Protein p53/genetics , United States
16.
Cancer Genet ; 248-249: 11-17, 2020 10.
Article in English | MEDLINE | ID: mdl-32966936

ABSTRACT

Pathogenic germline variants in the TP53 gene predispose to a wide range of cancers, known collectively as Li-Fraumeni syndrome (LFS). There has been much research aimed to identify genotype-phenotype correlations, that is, differences between variant location and/or effect and cancer spectrum. These correlations, should they exist, have potential to impact clinical management of carriers. Review of previously published studies showed a variety of study designs and inconsistency in reported findings. Here, we used pooled data from 427 TP53 carriers who had undergone multigene panel testing and 154 TP53 carriers identified by single-gene testing to investigate correlations between TP53 genotype (truncating variants, hotspot variants, other missense variants with dominant-negative effect, missense variants without dominant-negative effect) and a number of LFS-selected malignancies. Our results suggest that carriers of truncating and hotspot variants might be more likely to present with LFS cancers and have shorter time to first cancer diagnosis compared to carriers of other variant types. However, the differences observed were minor, and we conclude that there is currently insufficient evidence to consider location and/or molecular effect of pathogenic variants to assist with clinical management of TP53 carriers. Larger studies are necessary to confirm the correlations suggested by our analysis.


Subject(s)
Biomarkers, Tumor/genetics , Genetic Association Studies , Genetic Testing/methods , Germ-Line Mutation , Li-Fraumeni Syndrome/pathology , Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Adult , Female , Humans , Li-Fraumeni Syndrome/genetics , Male , Neoplasms/genetics , Prognosis , Survival Rate
17.
Hum Mutat ; 41(9): 1555-1562, 2020 09.
Article in English | MEDLINE | ID: mdl-32485079

ABSTRACT

Early onset breast cancer is the most common malignancy in women with Li-Fraumeni syndrome, caused by germline TP53 pathogenic variants. It has repeatedly been suggested that breast tumors from TP53 carriers are more likely to be HER2+ than those of noncarriers, but this information has not been incorporated into variant interpretation models for TP53. Breast tumor pathology is already being used quantitatively for assessing pathogenicity of germline variants in other genes, and it has been suggested that this type of evidence can be incorporated into current American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification. Here, by reviewing published data and using internal datasets separated by different age groups, we investigated if breast tumor HER2+ status has utility as a predictor of TP53 germline variant pathogenicity, considering age at diagnosis. Overall, our results showed that the identification of HER2+ breast tumors diagnosed before the age of 40 can be conservatively incorporated into the current TP53-specific ACMG/AMP PP4 criterion, following a point system detailed in this manuscript. Further larger studies will be needed to reassess the value of HER2+ breast tumors diagnosed at a later age.


Subject(s)
Breast Neoplasms/genetics , Germ-Line Mutation , Tumor Suppressor Protein p53/genetics , Adult , Breast Neoplasms/diagnosis , Female , Guidelines as Topic , Humans , Middle Aged , Phenotype , Receptor, ErbB-2/genetics
18.
Hum Mutat ; 41(3): 537-542, 2020 03.
Article in English | MEDLINE | ID: mdl-31898864

ABSTRACT

The American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for variant classification are widely used for clinical interpretation of gene test results. These guidelines may be specified to genes/syndromes of interest to improve their utility in the clinical setting. As part of these specifications, phenotype-related criteria can be detailed and weighted depending on the personal history of disease for a given variant carrier. We investigated how ascertainment can affect the significance and/or weight of patient phenotype as a predictor of germline-variant pathogenicity, using the Li-Fraumeni Syndrome gene TP53 as an example. Likelihood ratios in favor of variant pathogenicity were determined for a report of the personal history of several TP53-related cancers, using data from 2,656 probands undergoing single-gene testing (SGT) and 15,483 undergoing multi-gene panel testing (MGPT). Overall, TP53-associated cancers were more predictive of pathogenicity, and demonstrated greater evidence weight, in the MGPT versus SGT dataset. This observation is almost certainly explained by differences in proband ascertainment for the two streams of testing, and these findings have implications for germline-variant classification using ACMG/AMP guidelines.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Practice Guidelines as Topic , Alleles , Clinical Decision-Making , Disease Management , Genetic Association Studies/methods , Genetic Testing , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Odds Ratio , Phenotype , Tumor Suppressor Protein p53/genetics , United States
19.
Cancer Genet ; 235-236: 21-27, 2019 06.
Article in English | MEDLINE | ID: mdl-31296311

ABSTRACT

TP53 pathogenic germline variation is associated with the multi-cancer predisposition Li-Fraumeni syndrome (LFS). Next-generation sequencing and multigene panel testing are highlighting variability in the clinical presentation of patients with TP53 positive results. We aimed to investigate if the p53 variants considered as major hotspots at both germline and somatic levels (p.Arg175His, p.Gly245Asp, p.Gly245Ser, p.Arg248Gln, p.Arg248Trp, p.Arg273Cys, p.Arg273His, and p.Arg282Trp) were associated with poorer prognostic features compared to other pathogenic missense variants in the DNA-binding domain. To do so, we assessed clinical features from 1025 carriers of germline TP53 pathogenic variants (749 probands and 276 relatives) from three independent datasets (IARC TP53 Database, Ambry Single Gene Testing, and Ambry Multigene Panel Testing). We observed that, compared to carriers of non-hotspot germline variants, individuals that carried a hotspot germline variant were more likely to present with a Classic LFS phenotype, earlier age of first breast cancer onset, and shorter time to diagnosis to any cancer. Further studies with larger datasets addressing differences in cancer phenotypes by genotype are thus needed to replicate our findings and consider variant effect and position, towards future personalized clinical management of pathogenic variant carriers.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Li-Fraumeni Syndrome/genetics , Tumor Suppressor Protein p53/genetics , Genetic Variation/genetics , Genotype , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Phenotype , Prognosis
20.
Hum Mutat ; 40(6): 788-800, 2019 06.
Article in English | MEDLINE | ID: mdl-30840781

ABSTRACT

Germline pathogenic variants in the TP53 gene cause Li-Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and use of high-intensity screening programs. The aim of this study was to develop an evidence-based quantitative model that integrates independent in silico data (Align-GVGD and BayesDel) and somatic to germline ratio (SGR), to assign pathogenicity to every possible missense variant in the TP53 gene. To do this, a likelihood ratio for pathogenicity (LR) was derived from each component calibrated using reference sets of assumed pathogenic and benign missense variants. A posterior probability of pathogenicity was generated by combining LRs, and algorithm outputs were validated using different approaches. A total of 730 TP53 missense variants could be assigned to a clinically interpretable class. The outputs of the model correlated well with existing clinical information, functional data, and ClinVar classifications. In conclusion, these quantitative outputs provide the basis for individualized assessment of cancer risk useful for clinical interpretation. In addition, we propose the value of the novel SGR approach for use within the ACMG/AMP guidelines for variant classification.


Subject(s)
Computational Biology/methods , Li-Fraumeni Syndrome/genetics , Mutation, Missense , Tumor Suppressor Protein p53/genetics , Algorithms , Computer Simulation , Genetic Predisposition to Disease , Humans , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...