Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell J ; 14(4): 264-9, 2013.
Article in English | MEDLINE | ID: mdl-23577305

ABSTRACT

OBJECTIVE: The aim of present study was cloning and expression of phiC31 integrase cDNA in a bacterial expression vector. Thus, an intra molecular assay vector was applied to show in vitro activity of recombinant protein. MATERIALS AND METHODS: In this experimental study, phiC31 cDNA was subcloned into a prokaryotic expression vector and transformed into E.coli Bl21 (DE3). Recombinant phiC31 integrase was purified form the bacterial cell lysates and its activity was verified by an in vitro functional assessment. RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified phiC31 integrase confirmed the size of protein (70 kDa). Finally, the functionality of purified phiC31 integrase was verified. CONCLUSION: The results of this study indicated that the purified integrase has a great potential application for in vitro site-specific integration.

2.
Avicenna J Med Biotechnol ; 5(1): 2-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23626871

ABSTRACT

BACKGROUND: The transcription factor Oct-4, is an important marker of undifferentiating level and a key regulating factor for maintenance of pluripotency in cells. Establishment of an Oct-4 promoter-based reporter system is an appropriate tool for monitoring the differentiation of embryonic stem cells both in vivo and in vitro. METHODS: In the present study, we report construction of a recombinant vector, pDB2 Oct4 promoter/EGFP, in which expression of Enhanced Green Fluorescent Protein (EGFP) was controlled by the mouse Oct-4 promoter. RESULTS: In transfected mouse embryonic stem cells with this vector, EGFP was predicted to be specifically expressed in pluripotency state. After transfection, high-level expression of EGFP under the control of Oct-4 promoter was observed in manipulated embryonic stem cells. CONCLUSION: Thus, our new cellular reporter showed that both the properties of embryonic cells and expression the EGFP could be of great help in studying the differentiating and reprogramming mechanisms of mESCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...