Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 277(5322): 67-71, 1997 Jul 04.
Article in English | MEDLINE | ID: mdl-9204898

ABSTRACT

The isolated, young, sunlike star TW Hya and four other young stars in its vicinity are strong x-ray sources. Their similar x-ray and optical properties indicate that the stars make up a physical association that is on the order of 20 million years old and that lies between about 40 and 60 parsecs (between about 130 and 200 light years) from Earth. TW Hya itself displays circumstellar CO, HCN, CN, and HCO+ emission. These molecules probably orbit the star in a solar-system-sized disk viewed more or less face-on, whereas the star is likely viewed pole-on. Being at least three times closer to Earth than any well-studied region of star formation, the TW Hya Association serves as a test-bed for the study of x-ray emission from young stars and the formation of planetary systems around sunlike stars.


Subject(s)
Astronomy , Astronomical Phenomena , Carbon Monoxide , Cyanides , Evolution, Planetary , Extraterrestrial Environment , Formates , Hydrogen Cyanide , Spectrometry, X-Ray Emission , Spectrum Analysis , X-Rays
2.
Nature ; 373(6514): 494-6, 1995 Feb 09.
Article in English | MEDLINE | ID: mdl-7845460

ABSTRACT

Although stars form from clouds of gas and dust, there are insignificant amounts of gas around ordinary (Sun-like) stars. This suggests that hydrogen and helium, the primary constituents of planets such as Jupiter and Saturn, are not easily retained in orbit as a star matures. The gas-giant planets in the Solar System must therefore have formed rapidly. Models of their formation generally suggest that a solid core formed in < or = 10(6) yr, followed by the accretion of the massive gaseous envelope in approximately 10(7) yr (refs 1-5). But how and when the gas of the solar nebula dissipated, and how this compares with the predicted timescale of gas-giant formation, remains unclear, in part because direct observations of circumstellar gas have been made only for stars either younger or older than the critical range of 10(6)-10(7) yr (refs 8-15). Here we report observations of the molecular gas surrounding 20 stars whose ages are likely to be in this range. The gas dissipates rapidly; after a few million years the mass remaining is typically much less than the mass of Jupiter. Thus, if gas-giant planets are common in the Galaxy, they must form even more quickly than present models suggest.


Subject(s)
Extraterrestrial Environment , Gases , Planets
SELECTION OF CITATIONS
SEARCH DETAIL
...