Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 9680-9689, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38364813

ABSTRACT

Nitric oxide (NO) generated within the tumor microenvironment is an established driver of cancer progression and metastasis. Recent efforts have focused on leveraging this feature to target cancer through the development of diagnostic imaging agents and activatable chemotherapeutics. In this context, porphyrins represent an extraordinarily promising class of molecules, owing to their demonstrated use within both modalities. However, the remodeling of a standard porphyrin to afford a responsive chemical that can distinguish elevated NO from physiological levels has remained a significant research challenge. In this study, we employed a photoinduced electron transfer strategy to develop a panel of NO-activatable porphyrin photosensitizers (NOxPorfins) augmented with real-time fluorescence monitoring capabilities. The lead compound, NOxPorfin-1, features an o-phenylenediamine trigger that can effectively capture NO (via N2O3) to yield a triazole product that exhibits a 7.5-fold enhancement and a 70-fold turn-on response in the singlet oxygen quantum yield and fluorescence signal, respectively. Beyond demonstrating excellent in vitro responsiveness and selectivity toward NO, we showcase the potent photodynamic therapy (PDT) effect of NOxPorfin-1 in murine breast cancer and human non-small cellular lung cancer cells. Further, to highlight the in vivo efficacy, two key studies were executed. First, we utilized NOxPorfin-1 to ablate murine breast tumors in a site-selective manner without causing substantial collateral damage to healthy tissue. Second, we established a nascent human lung cancer model to demonstrate the unprecedented ability of NOxPorfin-1 to halt tumor growth and progression completely. The results of the latter study have tremendous implications for applying PDT to target metastatic lesions.


Subject(s)
Lung Neoplasms , Photochemotherapy , Porphyrins , Humans , Animals , Mice , Nitric Oxide , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Lung Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34480005

ABSTRACT

The development of high-performance photoacoustic (PA) probes that can monitor disease biomarkers in deep tissue has the potential to replace invasive medical procedures such as a biopsy. However, such probes must be optimized for in vivo performance and exhibit an exceptional safety profile. In this study, we have developed PACu-1, a PA probe designed for biopsy-free assessment (BFA) of hepatic Cu via photoacoustic imaging. PACu-1 features a Cu(I)-responsive trigger appended to an aza-BODIPY dye platform that has been optimized for ratiometric sensing. Owing to its excellent performance, we were able to detect basal levels of Cu in healthy wild-type mice as well as elevated Cu in a Wilson's disease model and in a liver metastasis model. To showcase the potential impact of PACu-1 for BFA, we conducted two blind studies in which we were able to successfully identify Wilson's disease animals from healthy control mice in each instance.


Subject(s)
Copper/metabolism , Hepatolenticular Degeneration/metabolism , Liver Neoplasms/secondary , Photoacoustic Techniques/instrumentation , Animals , Biopsy , Disease Models, Animal , Hepatolenticular Degeneration/pathology , Mice , Mice, Inbred BALB C , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...