Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Ecol Evol ; 3(1): 45-52, 2019 01.
Article in English | MEDLINE | ID: mdl-30532048

ABSTRACT

Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.


Subject(s)
Climate Change , Flowers/growth & development , Seasons , Temperature , Plant Development , Tundra
3.
Ambio ; 45(5): 551-66, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26932602

ABSTRACT

Sheep grazing is an important part of agriculture in the North Atlantic region, defined here as the Faroe Islands, Greenland, Iceland, Norway and Scotland. This process has played a key role in shaping the landscape and biodiversity of the region, sometimes with major environmental consequences, and has also been instrumental in the development of its rural economy and culture. In this review, we present results of the first interdisciplinary study taking a long-term perspective on sheep management, resource economy and the ecological impacts of sheep grazing, showing that sustainability boundaries are most likely to be exceeded in fragile environments where financial support is linked to the number of sheep produced. The sustainability of sheep grazing can be enhanced by a management regime that promotes grazing densities appropriate to the site and supported by area-based subsidy systems, thus minimizing environmental degradation, encouraging biodiversity and preserving the integrity of ecosystem processes.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Herbivory , Sheep/growth & development , Animals , Atlantic Ocean , Conservation of Natural Resources/economics , Environmental Monitoring/economics , Rural Population
4.
Proc Natl Acad Sci U S A ; 112(2): 448-52, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25548195

ABSTRACT

Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.


Subject(s)
Climate Change , Ecological Parameter Monitoring/methods , Plants , Biodiversity , Ecosystem , Global Warming , Plant Physiological Phenomena
5.
Ecol Lett ; 15(2): 164-75, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22136670

ABSTRACT

Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.


Subject(s)
Adaptation, Biological , Ecosystem , Global Warming , Plant Development , Arctic Regions , Biodiversity , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...