Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 347(6223): 755-60, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25678659

ABSTRACT

The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies.


Subject(s)
Biosensing Techniques , Calcium/analysis , Genes, Immediate-Early , Luminescent Proteins/metabolism , Neural Pathways/chemistry , Neuronal Calcium-Sensor Proteins/metabolism , Sensory Receptor Cells/chemistry , Staining and Labeling/methods , Animals , Calcium/metabolism , Drosophila melanogaster , Fluorescence , Indicators and Reagents/analysis , Indicators and Reagents/metabolism , Luminescent Proteins/genetics , Mice , Neural Pathways/cytology , Neural Pathways/physiology , Neuronal Calcium-Sensor Proteins/genetics , Protein Engineering , Sensory Receptor Cells/physiology , Zebrafish
2.
PLoS One ; 8(10): e77728, 2013.
Article in English | MEDLINE | ID: mdl-24155972

ABSTRACT

Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude.


Subject(s)
Calcium Signaling , Calcium/metabolism , Genes, Reporter , Neurons/metabolism , Action Potentials/physiology , Animals , Cells, Cultured , Electric Stimulation , Fluorescence , Glutamic Acid/metabolism , Humans , Indicators and Reagents , Rats , Receptors, GABA/metabolism , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...