Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37512904

ABSTRACT

In Ruminiclostridium cellulolyticum, cellobiose is imported by the CuaABC ATP-binding cassette transporter containing the solute-binding protein (SBP) CuaA and is further degraded in the cytosol by the cellobiose phosphorylase CbpA. The genes encoding these proteins have been shown to be essential for cellobiose and cellulose utilization. Here, we show that a second SBP (CuaD), whose gene is adjacent to two genes encoding a putative two-component regulation system (CuaSR), forms a three-component system with CuaS and CuaR. Studies of mutant and recombinant strains of R. cellulolyticum have indicated that cuaD is important for the growth of strains on cellobiose and cellulose. Furthermore, the results of our RT-qPCR experiments suggest that both the three (CuaDSR)- and the two (CuaSR)-component systems are able to perceive the cellobiose signal. However, the strain producing the three-component system is more efficient in its cellobiose and cellulose utilization. As CuaD binds to CuaS, we propose an in-silico model of the complex made up of two extracellular domains of CuaS and two of CuaD. CuaD allows microorganisms to detect very low concentrations of cellobiose due to its high affinity and specificity for this disaccharide, and together with CuaSR, it triggers the expression of the cuaABC-cbpA genes involved in cellodextrins uptake.

2.
Biotechnol Biofuels ; 12: 208, 2019.
Article in English | MEDLINE | ID: mdl-31497068

ABSTRACT

BACKGROUND: In anaerobic cellulolytic micro-organisms, cellulolysis results in the action of several cellulases gathered in extracellular multi-enzyme complexes called cellulosomes. Their action releases cellobiose and longer cellodextrins which are imported and further degraded in the cytosol to fuel the cells. In Ruminiclostridium cellulolyticum, an anaerobic and cellulolytic mesophilic bacteria, three cellodextrin phosphorylases named CdpA, CdpB, and CdpC, were identified in addition to the cellobiose phosphorylase (CbpA) previously characterized. The present study aimed at characterizing them, exploring their implication during growth on cellulose to better understand the life-style of cellulolytic bacteria on such substrate. RESULTS: The three cellodextrin phosphorylases from R. cellulolyticum displayed marked different enzymatic characteristics. They are specific for cellodextrins of different lengths and present different k cat values. CdpC is the most active enzyme before CdpA, and CdpB is weakly active. Modeling studies revealed that a mutation of a conserved histidine residue in the phosphate ion-binding pocket in CdpB and CdpC might explain their activity-level differences. The genes encoding these enzymes are scattered over the chromosome of R. cellulolyticum and only the expression of the gene encoding the cellobiose phosphorylase and the gene cdpA is induced during cellulose growth. Characterization of four independent mutants constructed in R. cellulolyticum for each of the cellobiose and cellodextrin phosphorylases encoding genes indicated that only the cellobiose phosphorylase is essential for growth on cellulose. CONCLUSIONS: Unexpectedly, the cellobiose phosphorylase but not the cellodextrin phosphorylases is essential for the growth of the model bacterium on cellulose. This suggests that the bacterium adopts a "short" dextrin strategy to grow on cellulose, even though the use of long cellodextrins might be more energy-saving. Our results suggest marked differences in the cellulose catabolism developed among cellulolytic bacteria, which is a result that might impact the design of future engineered strains for biomass-to-biofuel conversion.

3.
Biotechnol Biofuels ; 10: 250, 2017.
Article in English | MEDLINE | ID: mdl-29093754

ABSTRACT

BACKGROUND: Like a number of anaerobic and cellulolytic Gram-positive bacteria, the model microorganism Ruminiclostridium cellulolyticum produces extracellular multi-enzymatic complexes called cellulosomes, which efficiently degrade the crystalline cellulose. Action of the complexes on cellulose releases cellobiose and longer cellodextrins but to date, little is known about the transport and utilization of the produced cellodextrins in the bacterium. A better understanding of the uptake systems and fermentation of sugars derived from cellulose could have a major impact in the field of biofuels production. RESULTS: We characterized a putative ABC transporter devoted to cellodextrins uptake, and a cellobiose phosphorylase (CbpA) in R. cellulolyticum. The genes encoding the components of the ABC transporter (a binding protein CuaA and two integral membrane proteins) and CbpA are expressed as a polycistronic transcriptional unit induced in the presence of cellobiose. Upstream, another polycistronic transcriptional unit encodes a two-component system (sensor and regulator), and a second binding protein CuaD, and is constitutively expressed. The products might form a three-component system inducing the expression of cuaABC and cbpA since we showed that CuaR is able to recognize the region upstream of cuaA. Biochemical analysis showed that CbpA is a strict cellobiose phosphorylase inactive on longer cellodextrins; CuaA binds to all cellodextrins (G2-G5) tested, whereas CuaD is specific to cellobiose and presents a higher affinity to this sugar. This results are in agreement with their function in transport and signalization, respectively. Characterization of a cuaD mutant, and its derivatives, indicated that the ABC transporter and CbpA are essential for growth on cellobiose and cellulose. CONCLUSIONS: For the first time in a Gram-positive strain, we identified a three-component system and a conjugated ABC transporter/cellobiose phosphorylase system which was shown to be essential for the growth of the model cellulolytic bacterium R. cellulolyticum on cellobiose and cellulose. This efficient and energy-saving system of transport and phosphorolysis appears to be the major cellobiose utilization pathway in R. cellulolyticum, and seems well adapted to cellulolytic life-style strain. It represents a new way to enable engineered strains to utilize cellodextrins for the production of biofuels or chemicals of interest from cellulose.

SELECTION OF CITATIONS
SEARCH DETAIL
...