Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cardiovasc Res ; 79(2): 331-40, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18339649

ABSTRACT

AIMS: Heart failure is associated with decreased myocardial fatty acid oxidation capacity and has been likened to energy starvation. Increased fatty acid availability results in an induction of genes promoting fatty acid oxidation. The aim of the present study was to investigate possible mechanisms by which high fat feeding improved mitochondrial and contractile function in heart failure. METHODS AND RESULTS: Male Wistar rats underwent coronary artery ligation (HF) or sham surgery and were immediately fed either a normal (14% kcal fat) (SHAM, HF) or high-fat diet (60% kcal saturated fat) (SHAM+FAT, HF+FAT) for 8 weeks. Mitochondrial respiration and gene expression and enzyme activities of fatty acid-regulated mitochondrial genes and proteins were assessed. Subsarcolemmal (SSM) and interfibrillar mitochondria were isolated from the left ventricle. State 3 respiration using lipid substrates octanoylcarnitine and palmitoylcarnitine increased in the SSM of HF+FAT compared with SHAM+FAT and HF, respectively (242 +/- 21, 246 +/- 21 vs. 183 +/- 8, 181 +/- 6 and 193 +/- 17, 185 +/- 16 nAO min(-1) mg(-1)). Despite decreased medium-chain acyl-CoA dehydrogenase (MCAD) mRNA in HF and HF+FAT, MCAD protein was not altered, and MCAD activity increased in HF+FAT (HF, 65.1 +/- 2.7 vs. HF+FAT, 81.5 +/- 5.4 nmoles min(-1) mg(-1)). Activities of short- and long-chain acyl-CoA dehydrogenase also were elevated and correlated to increased state 3 respiration. This was associated with an improvement in myocardial contractility as assessed by left ventricular +dP/dt max. CONCLUSION: Administration of a high-fat diet increased state 3 respiration and acyl-CoA dehydrogenase activities, but did not normalize mRNA or protein levels of acyl-CoA dehydrogenases in coronary artery ligation-induced heart failure rats.


Subject(s)
Acyl-CoA Dehydrogenase/metabolism , Heart Failure/enzymology , Heart Failure/physiopathology , Mitochondria, Heart/metabolism , Myocardial Contraction/physiology , Adiponectin/metabolism , Animals , Blood Glucose/metabolism , Carnitine/analogs & derivatives , Carnitine/metabolism , Dietary Fats/pharmacology , Disease Models, Animal , Electron Transport Chain Complex Proteins/metabolism , Fatty Acids, Nonesterified/metabolism , Insulin/metabolism , Leptin/metabolism , Male , Myocardial Contraction/drug effects , Rats , Rats, Wistar , Triglycerides/metabolism
2.
Am J Physiol Heart Circ Physiol ; 292(3): H1498-506, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17114240

ABSTRACT

Lipid accumulation in nonadipose tissue due to enhanced circulating fatty acids may play a role in the pathophysiology of heart failure, obesity, and diabetes. Accumulation of myocardial lipids and related intermediates, e.g., ceramide, is associated with decreased contractile function, mitochondrial oxidative phosphorylation, and electron transport chain (ETC) complex activities. We tested the hypothesis that the progression of heart failure would be exacerbated by elevated myocardial lipids and an associated ceramide-induced inhibition of mitochondrial oxidative phosphorylation and ETC complex activities. Heart failure (HF) was induced by coronary artery ligation. Rats were then randomly assigned to either a normal (10% kcal from fat; HF, n = 8) or high saturated fat diet (60% kcal from saturated fat; HF + Sat, n = 7). Sham-operated animals (sham; n = 8) were fed a normal diet. Eight weeks postligation, left ventricular (LV) function was assessed by echocardiography and catheterization. Subsarcolemmal and interfibrillar mitochondria were isolated from the LV. Heart failure resulted in impaired LV contractile function [decreased percent fractional shortening and peak rate of LV pressure rise and fall (+/-dP/dt)] and remodeling (increased end-diastolic and end-systolic dimensions) in HF compared with sham. No further progression of LV dysfunction was evident in HF + Sat. Mitochondrial state 3 respiration was increased in HF + Sat compared with HF despite elevated myocardial ceramide. Activities of ETC complexes II and IV were elevated in HF + Sat compared with HF and sham. High saturated fat feeding following coronary artery ligation was associated with increased oxidative phosphorylation and ETC complex activities and did not adversely affect LV contractile function or remodeling, despite elevations in myocardial ceramide.


Subject(s)
Dietary Fats , Mitochondria, Heart/metabolism , Myocardial Infarction/physiopathology , Ventricular Function, Left/physiology , Animals , Coronary Vessels/physiopathology , Disease Models, Animal , Echocardiography , Electron Transport , Mitochondria, Heart/drug effects , Oxidative Phosphorylation , Rats , Ventricular Dysfunction, Left/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...