Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
J Dent Res ; 103(3): 318-328, 2024 03.
Article in English | MEDLINE | ID: mdl-38343385

ABSTRACT

Interferon regulatory factor 8 (IRF8), a transcription factor expressed in immune cells, functions as a negative regulator of osteoclasts and helps maintain dental and skeletal homeostasis. Previously, we reported that a novel mutation in the IRF8 gene increases susceptibility to multiple idiopathic cervical root resorption (MICRR), a form of tooth root resorption mediated by increased osteoclast activity. The IRF8 G388S variant in the highly conserved C-terminal motif is predicted to alter the protein structure, likely impairing IRF8 function. To investigate the molecular basis of MICRR and IRF8 function in osteoclastogenesis, we generated Irf8 knock-in (KI) mice using CRISPR/Cas9 technique modeling the human IRF8G388S mutation. The heterozygous (Het) and homozygous (Homo) Irf8 KI mice showed no gross morphological defects, and the development of hematopoietic cells was unaffected and similar to wild-type (WT) mice. The Irf8 KI Het and Homo mice showed no difference in macrophage gene signatures important for antimicrobial defenses and inflammatory cytokine production. Consistent with the phenotype observed in MICRR patients, Irf8 KI Het and Homo mice demonstrated significantly increased osteoclast formation and resorption activity in vivo and in vitro when compared to WT mice. The oral ligature-inserted Het and Homo mice displayed significantly increased root resorption and osteoclast-mediated alveolar bone loss compared to WT mice. The increased osteoclastogenesis noted in KI mice is due to the inability of IRF8G388S mutation to inhibit NFATc1-dependent transcriptional activation and downstream osteoclast specific transcripts, as well as its impact on autophagy-related pathways of osteoclast differentiation. This translational study delineates the IRF8 domain important for osteoclast function and provides novel insights into the IRF8 mutation associated with MICRR. IRF8G388S mutation mainly affects osteoclastogenesis while sparing immune cell development and function. These insights extend beyond oral health and significantly advance our understanding of skeletal disorders mediated by increased osteoclast activity and IRF8's role in osteoclastogenesis.


Subject(s)
Bone Resorption , Interferon Regulatory Factors , Root Resorption , Animals , Humans , Mice , Bone Resorption/genetics , Bone Resorption/metabolism , Cell Differentiation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mutation , NFATC Transcription Factors/genetics , Osteoclasts/metabolism , RANK Ligand/metabolism , Root Resorption/genetics , Root Resorption/metabolism
2.
J Dent Res ; 102(2): 187-196, 2023 02.
Article in English | MEDLINE | ID: mdl-36377066

ABSTRACT

Bone sialoprotein (BSP) is an extracellular matrix (ECM) protein associated with mineralized tissues, particularly bone and cementum. BSP includes functional domains implicated in collagen binding, hydroxyapatite nucleation, and cell signaling, although its function(s) in osteoblast and osteoclast differentiation and function remain incompletely understood. Genetic ablation of BSP in Ibsp knockout (Ibsp-/-) mice results in developmental bone mineralization and remodeling defects, with alveolar bone more severely affected than the femurs and tibias of the postcranial skeleton. The role of BSP in alveolar bone healing has not been studied. We hypothesized that BSP ablation would cause defective alveolar bone healing. We employed a maxillary first molar extraction socket healing model in 42-d postnatalIbsp-/- and wild-type (WT) control mice. Tissues were collected at 0, 7, 14, 21, and 56 d postprocedure (dpp) for analysis by micro-computed tomography (microCT), histology, in situ hybridization (ISH), immunohistochemistry (IHC), and quantitative polymerase chain reaction (qPCR) array. As expected, alveolar bone healing progressed in WT mice with increasing bone volume fraction (BV/TV), bone mineral density (BMD), and tissue mineral density (TMD), transitioning from woven to mature bone from 7 to 56 dpp. Ibsp messenger RNA (mRNA) and BSP protein were strongly expressed during alveolar bone healing in parallel with other osteogenic markers. Compared to WT, Ibsp-/- mice exhibited 50% to 70% reduced BV/TV and BMD at all time points, 7% reduced TMD at 21 dpp, abnormally increased Col1a1 and Alpl mRNA expression, and persistent presence of woven bone and increased bone marrow in healing sockets. qPCR revealed substantially dysregulated gene expression in alveolar bone of Ibsp-/- versus WT mice, with significantly disrupted expression of 45% of tested genes in functional groups, including markers for osteoblasts, osteoclasts, mineralization, ECM, cell signaling, and inflammation. We conclude that BSP is a critical and nonredundant factor for alveolar bone healing, and its absence disrupts multiple major pathways involved in appropriate healing.


Subject(s)
Dental Cementum , Osteopontin , Animals , Mice , Integrin-Binding Sialoprotein/genetics , Osteopontin/metabolism , X-Ray Microtomography , Dental Cementum/metabolism , RNA, Messenger , Sialoglycoproteins/metabolism
3.
J Dent Res ; 101(10): 1238-1247, 2022 09.
Article in English | MEDLINE | ID: mdl-35686360

ABSTRACT

Bone sialoprotein (gene: Ibsp; protein: BSP) is a multifunctional extracellular matrix protein present in bone, cementum, and dentin. Accumulating evidence supports BSP as a key regulator of mineralized tissue formation via evolutionarily conserved functional domains, including a C-terminal integrin-binding Arg-Gly-Asp (RGD) domain implicated in extracellular matrix-cell signaling. Ablation of Ibsp in mice (Ibsp-/-) results in impaired bone growth and mineralization and defective osteoclastogenesis, with effects in the craniofacial region including reduced acellular cementum formation, detachment of the periodontal ligament (PDL), alveolar bone hypomineralization, and severe periodontal breakdown. We hypothesized that BSP-RGD plays an important role in cementum and alveolar bone formation and mineralization, as well as periodontal function. This hypothesis was tested by replacing the RGD motif with a nonfunctional Lys-Ala-Glu (KAE) sequence in (IbspKAE/KAE) mice and OCCM.30 murine (IbspKAE) cementoblasts. The RGD domain was not critical for acellular or cellular cementum formation in IbspKAE/KAE mice. However, PDL volume and thickness were increased, and significantly more tartrate-resistant acid phosphatase-positive osteoclasts were found on alveolar bone surfaces of IbspKAE/KAE mice versus wild type mice. PDL organization was disrupted as indicated by picrosirius red stain, second harmonic generation imaging, dynamic mechanical analysis, and decreased asporin proteoglycan localization. In vitro studies implicated RGD functions in cell migration, adhesion, and mineralization, and this was confirmed by an ossicle implant model where cells lacking BSP-RGD showed substantial defects as compared with controls. In total, the BSP-RGD domain is implicated in periodontal development, though the scale and scope of changes indicated by in vitro studies indicate that other factors may partially compensate for and reduce the phenotypic severity of mice lacking BSP-RGD in vivo.


Subject(s)
Dental Cementum , Integrin-Binding Sialoprotein , Oligopeptides , Animals , Dental Cementum/metabolism , Integrin-Binding Sialoprotein/metabolism , Mice , Oligopeptides/metabolism , Periodontal Ligament/physiology
4.
Nature ; 603(7899): 58-62, 2022 03.
Article in English | MEDLINE | ID: mdl-35236975

ABSTRACT

The interaction of intense particle bunches with plasma can give rise to plasma wakes1,2 capable of sustaining gigavolt-per-metre electric fields3,4, which are orders of magnitude higher than provided by state-of-the-art radio-frequency technology5. Plasma wakefields can, therefore, strongly accelerate charged particles and offer the opportunity to reach higher particle energies with smaller and hence more widely available accelerator facilities. However, the luminosity and brilliance demands of high-energy physics and photon science require particle bunches to be accelerated at repetition rates of thousands or even millions per second, which are orders of magnitude higher than demonstrated with plasma-wakefield technology6,7. Here we investigate the upper limit on repetition rates of beam-driven plasma accelerators by measuring the time it takes for the plasma to recover to its initial state after perturbation by a wakefield. The many-nanosecond-level recovery time measured establishes the in-principle attainability of megahertz rates of acceleration in plasmas. The experimental signatures of the perturbation are well described by simulations of a temporally evolving parabolic ion channel, transferring energy from the collapsing wake to the surrounding media. This result establishes that plasma-wakefield modules could be developed as feasible high-repetition-rate energy boosters at current and future particle-physics and photon-science facilities.

5.
Radiography (Lond) ; 28(3): 817-822, 2022 08.
Article in English | MEDLINE | ID: mdl-35168894

ABSTRACT

INTRODUCTION: Postgraduate education in computed tomography (CT) and magnetic resonance imaging (MRI) varies globally. Multiple factors affect the development of associated core skills and competencies for these specialist roles. Previous research has highlighted that different teaching standards and methods may influence radiographers' confidence and competencies. Nonetheless, there is limited knowledge of skill development and capabilities in post-registration roles. Hence, the aim of this research was to explore radiographers' self-perceived competencies before, during and after successful completion of postgraduate study. METHODS: Radiographers enrolled on the CT and MRI courses voluntarily completed questionnaires at three time points. As part of the last survey, questions were added to evaluate their perceptions of the courses' impact on their clinical and professional practice. Descriptive statistics, Wilcoxon matched pairs signed rank and Friedman tests, were performed to analyse results across the different time points. RESULTS: 53 students completed the baseline survey, with initial perceived areas of weakness being lack of knowledge relating to CT or MR technology, cross-sectional anatomy and pathology. Follow up surveys, highlighted a significant increase in self-described competence in technical knowledge, literature appraisal and image viewing skills. As a result of completing the course, students described favourable changes to their departmental practices and their own continuing professional development (CPD). Challenges detailed included but not limited to lack of study time provided by employers, and the demands of balancing studies and work commitments. CONCLUSION: Postgraduate education has value and positively impacts radiographers and their clinical departments. The courses enabled the radiographers, including those experienced in CT and or MRI to develop skills they could translate into clinical practice, thereby contributing towards service delivery. IMPLICATIONS FOR PRACTICE: Post graduate education has the potential to enhance self-perceived competency in aspects of CT and MRI practice.


Subject(s)
Allied Health Personnel , Magnetic Resonance Imaging , Humans , Students , Surveys and Questionnaires , Tomography, X-Ray Computed
6.
J Biol Chem ; 298(2): 101531, 2022 02.
Article in English | MEDLINE | ID: mdl-34953855

ABSTRACT

Cancer is often characterized by aberrant gene expression patterns caused by the inappropriate activation of transcription factors. Signal transducer and activator of transcription 3 (STAT3) is a key transcriptional regulator of many protumorigenic processes and is persistently activated in many types of human cancer. However, like many transcription factors, STAT3 has proven difficult to target clinically. To address this unmet clinical need, we previously developed a cell-based assay of STAT3 transcriptional activity and performed an unbiased and high-throughput screen of small molecules known to be biologically active in humans. We identified the antimicrobial drug pyrimethamine as a novel and specific inhibitor of STAT3 transcriptional activity. Here, we show that pyrimethamine does not significantly affect STAT3 phosphorylation, nuclear translocation, or DNA binding at concentrations sufficient to inhibit STAT3 transcriptional activity, suggesting a potentially novel mechanism of inhibition. To identify the direct molecular target of pyrimethamine and further elucidate the mechanism of action, we used a new quantitative proteome profiling approach called proteome integral solubility alteration coupled with a metabolomic analysis. We identified human dihydrofolate reductase as a target of pyrimethamine and demonstrated that the STAT3-inhibitory effects of pyrimethamine are the result of a deficiency in reduced folate downstream of dihydrofolate reductase inhibition, implicating folate metabolism in the regulation of STAT3 transcriptional activity. This study reveals a previously unknown regulatory node of the STAT3 pathway that may be important for the development of novel strategies to treat STAT3-driven cancers.


Subject(s)
Anti-Infective Agents , Pyrimethamine , STAT3 Transcription Factor , Tetrahydrofolate Dehydrogenase , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Line, Tumor , Folic Acid/metabolism , Humans , Proteome/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
7.
J Hosp Infect ; 113: 14-21, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33864892

ABSTRACT

BACKGROUND: High-flow nasal cannula therapy (HFNC) may increase aerosol generation, putting healthcare workers at risk, including from SARS-CoV-2. AIM: To examine whether use of HFNC increases near-field aerosols and whether there is an association with flow rate. METHODS: Subjects aged four weeks to 24 months were recruited. Each child received HFNC therapy at different flow rates. Three stations with particle counters were deployed to measure particle concentrations and dispersion in the room: station 1 within 0.5 m, station 2 at 2 m, and station 3 on the other side of the room. Carbon dioxide (CO2) and relative humidity were measured. Far-field measurements were used to adjust the near-field measurements. FINDINGS: Ten children were enrolled, aged from 6 to 24 months (median: 9). Elevated CO2 indicated that the near-field measurements were in the breathing plane. Near-field breathing plane concentrations of aerosols with diameter 0.3-10 µm were elevated by the presence of the patient with no HFNC flow, relative to the room far-field, by 0.45 particles/cm3. Whereas variability between subjects in their emission and dispersion of particles was observed, no association was found between HFNC use, at any flow rate, and near-field particle counts. CONCLUSION: This method of particle sampling is feasible in hospital settings; correcting the near-patient aerosol and CO2 levels for the room far-field may provide proxies of exposure risk to pathogens generated. In this pilot, near-patient levels of particles with a diameter between 0.3 and 10 µm and CO2 were not affected by the use of HFNC.


Subject(s)
Aerosols/analysis , Catheterization , Noninvasive Ventilation , Cannula , Carbon Dioxide/analysis , Child, Preschool , Humans , Infant , Nose , Pilot Projects
8.
J Dent Res ; 100(9): 993-1001, 2021 08.
Article in English | MEDLINE | ID: mdl-33840251

ABSTRACT

Factors regulating the ratio of pyrophosphate (PPi) to phosphate (Pi) modulate biomineralization. Tissue-nonspecific alkaline phosphatase (TNAP) is a key promineralization enzyme that hydrolyzes the potent mineralization inhibitor PPi. The goal of this study was to determine whether TNAP could promote periodontal regeneration in bone sialoprotein knockout mice (Ibsp-/- mice), which are known to have a periodontal disease phenotype. Delivery of TNAP was accomplished either systemically (through a lentiviral construct expressing a mineral-targeted TNAP-D10 protein) or locally (through addition of recombinant human TNAP to a fenestration defect model). Systemic TNAP-D10 delivered by intramuscular injection at 5 d postnatal (dpn) increased circulating alkaline phosphatase (ALP) levels in Ibsp-/- mice by 5-fold at 30 dpn, with levels returning to normal by 60 dpn when tissues were evaluated by micro-computed tomography and histology. Local delivery of recombinant human TNAP to fenestration defects in 5-wk-old wild type (WT) and Ibsp-/- mice did not alter long-term circulating ALP levels, and tissues were evaluated by micro-computed tomography and histology at postoperative day 45. Systemic and local delivery of TNAP significantly increased alveolar bone volume (20% and 37%, respectively) and cementum thickness (3- and 42-fold) in Ibsp-/- mice, with evidence for periodontal ligament attachment and bone/cementum marker localization. Local delivery significantly increased regenerated cementum and bone in WT mice. Addition of 100-µg/mL bovine intestinal ALP to culture media to increase ALP in vitro increased media Pi concentration, mineralization, and Spp1 and Dmp1 marker gene expression in WT and Ibsp-/- OCCM.30 cementoblasts. Use of phosphonoformic acid, a nonspecific inhibitor of sodium Pi cotransport, indicated that effects of bovine intestinal ALP on mineralization and marker gene expression were in part through Pi transport. These findings show for the first time through multiple in vivo and in vitro approaches that pharmacologic modulation of Pi/PPi metabolism can overcome periodontal breakdown and accomplish regeneration.


Subject(s)
Alkaline Phosphatase , Dental Cementum , Animals , Calcification, Physiologic , Cattle , Integrin-Binding Sialoprotein , Mice , Mice, Knockout , X-Ray Microtomography
9.
J Dent Res ; 100(13): 1482-1491, 2021 12.
Article in English | MEDLINE | ID: mdl-33906518

ABSTRACT

Mutations in the PHEX gene lead to X-linked hypophosphatemia (XLH), a form of inherited rickets featuring elevated fibroblast growth factor 23 (FGF23), reduced 1,25-dihydroxyvitamin D (1,25D), and hypophosphatemia. Hyp mutant mice replicate the XLH phenotype, including dentin, alveolar bone, and cementum defects. We aimed to compare effects of 1,25D versus FGF23-neutralizing antibody (FGF23Ab) monotherapies on Hyp mouse dentoalveolar mineralization. Male Hyp mice, either injected subcutaneously with daily 1,25D or thrice weekly with FGF23 blocking antibody from 2 to 35 d postnatal, were compared to wild-type (WT) controls and untreated Hyp mice. Mandibles were analyzed by high-resolution micro-computed tomography (micro-CT), histology, and immunohistochemistry. Both interventions maintained normocalcemia, increased serum phosphate levels, and improved dentoalveolar mineralization in treated versus untreated Hyp mice. 1,25D increased crown dentin volume and thickness and root dentin/cementum volume, whereas FGF23Ab effects were limited to crown dentin volume. 1,25D increased bone volume fraction, bone mineral density, and tissue mineral density in Hyp mice, whereas FGF23Ab failed to significantly affect these alveolar bone parameters. Neither treatment fully attenuated dentin and bone defects to WT levels, and pulp volumes remained elevated regardless of treatment. Both treatments reduced predentin thickness and improved periodontal ligament organization, while 1,25D promoted a more profound improvement in acellular cementum thickness. Altered cell densities and lacunocanalicular properties of alveolar and mandibular bone osteocytes and cementocytes in Hyp mice were partially corrected by either treatment. Neither treatment normalized the altered distributions of bone sialoprotein and osteopontin in Hyp mouse alveolar bone. Moderate improvements from both 1,25D and FGF23Ab treatment regimens support further studies and collection of oral health data from subjects receiving a newly approved anti-FGF23 therapy. The inability of either treatment to fully correct Hyp mouse dentin and bone prompts further experiments into underlying pathological mechanisms to identify new therapeutic approaches.


Subject(s)
Familial Hypophosphatemic Rickets , Animals , Familial Hypophosphatemic Rickets/drug therapy , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Male , Mice , Vitamin D , X-Ray Microtomography
10.
J Dent Res ; 100(6): 639-647, 2021 06.
Article in English | MEDLINE | ID: mdl-33356859

ABSTRACT

Biomineralization is regulated by inorganic pyrophosphate (PPi), a potent physiological inhibitor of hydroxyapatite crystal growth. Progressive ankylosis protein (ANK) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) act to increase local extracellular levels of PPi, inhibiting mineralization. The periodontal complex includes 2 mineralized tissues, cementum and alveolar bone (AB), both essential for tooth attachment. Previous studies demonstrated that loss of function of ANK or ENPP1 (reducing PPi) resulted in increased cementum formation, suggesting PPi metabolism may be a target for periodontal regenerative therapies. To compare the effects of genetic ablation of Ank, Enpp1, and both factors concurrently on cementum and AB regeneration, mandibular fenestration defects were created in Ank knockout (Ank KO), Enpp1 mutant (Enpp1asj/asj), and double KO (dKO) mice. Genetic ablation of Ank, Enpp1, or both factors increased cementum regeneration compared to controls at postoperative days (PODs) 15 and 30 (Ank KO: 8-fold, 3-fold; Enpp1asj/asj: 7-fold, 3-fold; dKO: 11-fold, 4-fold, respectively) associated with increased fluorochrome labeling and expression of mineralized tissue markers, dentin matrix protein 1 (Dmp1/DMP1), osteopontin (Spp1/OPN), and bone sialoprotein (Ibsp/BSP). Furthermore, dKO mice featured increased cementum thickness compared to single KOs at POD15 and Ank KO at POD30. No differences were noted in AB volume between genotypes, but osteoblast/osteocyte markers were increased in all KOs, partially mineralized osteoid volume was increased in dKO versus controls at POD15 (3-fold), and mineral density was decreased in Enpp1asj/asj and dKOs at POD30 (6% and 9%, respectively). Increased numbers of osteoclasts were present in regenerated AB of all KOs versus controls. These preclinical studies suggest PPi modulation as a potential and novel approach for cementum regeneration, particularly targeting ENPP1 and/or ANK. Differences in cementum and AB regeneration in response to reduced PPi conditions highlight the need to consider tissue-specific responses in strategies targeting regeneration of the entire periodontal complex.


Subject(s)
Diphosphates , Tooth Ankylosis , Tooth , Animals , Bone and Bones , Dental Cementum , Mice , Mice, Knockout
11.
Bone ; 143: 115732, 2021 02.
Article in English | MEDLINE | ID: mdl-33160095

ABSTRACT

ALPL encodes tissue-nonspecific alkaline phosphatase (TNAP), an enzyme expressed in bone, teeth, liver, and kidney. ALPL loss-of-function mutations cause hypophosphatasia (HPP), an inborn error-of-metabolism that produces skeletal and dental mineralization defects. Case reports describe widely varying dental phenotypes, making it unclear how HPP comparatively affects the three unique dental mineralized tissues: enamel, dentin, and cementum. We hypothesized that HPP affected all dental mineralized tissues and aimed to establish quantitative measurements of dental tissues in a subject with HPP. The female proband was diagnosed with HPP during childhood based on reduced alkaline phosphatase activity (ALP), mild rachitic skeletal effects, and premature primary tooth loss. The diagnosis was subsequently confirmed genetically by the presence of compound heterozygous ALPL mutations (exon 5: c.346G>A, p.A116T; exon 10: c.1077C>G, p.I359M). Dental defects in 8 prematurely exfoliated primary teeth were analyzed by high resolution micro-computed tomography (micro-CT) and histology. Similarities to the Alpl-/- mouse model of HPP were identified by additional analyses of murine dentoalveolar tissues. Primary teeth from the proband exhibited substantial remaining root structure compared to healthy control teeth. Enamel and dentin densities were not adversely affected in HPP vs. control teeth. However, analysis of discrete dentin regions revealed an approximate 10% reduction in the density of outer mantle dentin of HPP vs. control teeth. All 4 incisors and the molar lacked acellular cementum by micro-CT and histology, but surprisingly, 2 of 3 prematurely exfoliated canines exhibited apparently normal acellular cementum. Based on dentin findings in the proband's teeth, we examined dentoalveolar tissues in a mouse model of HPP, revealing that the delayed initiation of mineralization in the incisor mantle dentin was associated with a broader lack of circumpulpal dentin mineralization. This study describes a quantitative approach to measure effects of HPP on dental tissues. This approach has uncovered a previously unrecognized novel mantle dentin defect in HPP, as well as a surprising and variable cementum phenotype within the teeth from the same HPP subject.


Subject(s)
Hypophosphatasia , Alkaline Phosphatase/genetics , Animals , Female , Hypophosphatasia/diagnostic imaging , Hypophosphatasia/genetics , Mice , Mutation/genetics , Tooth, Deciduous , X-Ray Microtomography
12.
Radiography (Lond) ; 27(2): 437-442, 2021 05.
Article in English | MEDLINE | ID: mdl-33115632

ABSTRACT

INTRODUCTION: Underpinned by a multi professional advanced clinical practice (ACP) framework, role consistency in practice level and education has been advocated across allied health professions. However little research has evaluated ACP expectations in radiography. This study identified the capability requirements of advanced and specialist diagnostic radiographers and mapped these to home country advanced practice frameworks and the Society and College of Radiographers (SCoR) Education and Career Framework. METHODS: A consecutive sample of UK job advertisements was collected over six months and analysed for role focus, professional and clinical responsibilities, reporting or procedural expectations and knowledge and experience. Qualitative content analysis was used to scrutinise capabilities during role mapping. RESULTS: A total of 42 job descriptions were analysed across UK Trusts and Health Boards, with 31 roles (73.8%) containing the terms advanced or specialist. Half of the advertised roles expected proficiency in reporting (n = 21; 50%). Responsibilities mapped to the practice outcomes of the SCoR framework in 31 roles (n = 31/42; 73.8%). The English documents (n = 40/42; 95.2%) evaluated against the multi professional framework identified significantly (χ2 = 14.6; p < 0.01) fewer capabilities (n = 13/40; 32.5%). Clinical practice was reflected broadly in textual behavioural descriptors however, leadership, education and research responsibilities were internal and operational in nature. CONCLUSION: This analysis of diagnostic radiographer job descriptions has demonstrated that many posts advertised as 'advanced' differ from advanced practice roles defined by the multi professional ACP framework, although they meet professional body standards. IMPLICATIONS FOR PRACTICE: Utilisation of diagnostic radiographers as 'true' advanced clinical practitioners remains intermittent. Greater consistency in job descriptions is required to strengthen radiography advanced practice and support radiographer development.


Subject(s)
Allied Health Personnel , Job Description , Humans , Leadership , Radiography
13.
Osteoporos Int ; 31(11): 2251-2257, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32572521

ABSTRACT

Using genetic, clinical, biochemical, and radiographic assessment and bioinformatic approaches, we present an unusual case of adult HPP caused by a novel de novo heterozygous nonsense mutation in the alkaline phosphatase (ALPL). INTRODUCTION: Hypophosphatasia (HPP) is caused by genetic alterations of the ALPL gene, encoding the tissue-nonspecific isozyme of alkaline phosphatase (TNSALP). Here, the purpose was to perform clinical and molecular investigation in a 36-year-old Caucasian woman suspected to present adult HPP. METHODS: Medical and dental histories were obtained for the proposita and family members, including biochemical, radiographic, and dental assessments. ALPL mutational analysis was performed by the Sanger sequencing method, and the functional impact prediction of the identified mutations was assessed by bioinformatic methods. RESULTS: We identified a novel heterozygous nonsense mutation in the ALPL gene (NM_000478.6:c.768G>A; W[TGG]>*[TGA]) associated with spontaneous vertebral fracture, severe back pain, musculoskeletal pain, low bone density, and short-rooted permanent teeth loss. Functional prediction analysis revealed that the Trp256Ter mutation led to a complete loss of TNSALP crown domain and extensive loss of other functional domains (calcium-binding domain, active site vicinity, and zinc-binding site) and over 60% loss of homodimer interface residues, suggesting that the mutant TNSALP molecules are nonfunctional and form unstable homodimers. Genotyping of the ALPL in the proposita's parents, sister, and niece revealed that in this case, HPP occurred due to a de novo mutation. CONCLUSION: The present study describes a novel genotype-phenotype and structure-function relationship for HPP, contributing to a better molecular comprehension of HPP etiology and pathophysiology.


Subject(s)
Alkaline Phosphatase , Hypophosphatasia , Adult , Alkaline Phosphatase/genetics , Codon, Nonsense , DNA Mutational Analysis , Female , Heterozygote , Humans , Hypophosphatasia/diagnostic imaging , Hypophosphatasia/genetics , Mutation
14.
Bone ; 136: 115329, 2020 07.
Article in English | MEDLINE | ID: mdl-32224162

ABSTRACT

Pyrophosphate (PPi) serves as a potent and physiologically important regulator of mineralization, with systemic and local concentrations determined by several key regulators, including: tissue-nonspecific alkaline phosphatase (ALPL gene; TNAP protein), the progressive ankylosis protein (ANKH; ANK), and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1; ENPP1). Results to date have indicated important roles for PPi in cementum formation, and we addressed several gaps in knowledge by employing genetically edited mouse models where PPi metabolism was disrupted and pharmacologically modulating PPi in a PPi-deficient mouse model. We demonstrate that acellular cementum growth is inversely proportional to PPi levels, with reduced cementum in Alpl KO (increased PPi levels) mice and excess cementum in Ank KO mice (decreased PPi levels). Moreover, simultaneous ablation of Alpl and Ank results in reestablishment of functional cementum in dKO mice. Additional reduction of PPi by dual deletion of Ank and Enpp1 does not further increase cementogenesis, and PDL space is maintained in part through bone modeling/remodeling by osteoclasts. Our results provide insights into cementum formation and expand our knowledge of how PPi regulates cementum. We also demonstrate for the first time that pharmacologic manipulation of PPi through an ENPP1-Fc fusion protein can regulate cementum growth, supporting therapeutic interventions targeting PPi metabolism.


Subject(s)
Cementogenesis , Diphosphates , Animals , Dental Cementum , Mice , Osteoclasts
15.
J Dent Res ; 99(4): 419-428, 2020 04.
Article in English | MEDLINE | ID: mdl-31977267

ABSTRACT

Mutations in PHEX cause X-linked hypophosphatemia (XLH), a form of hypophosphatemic rickets. Hyp (Phex mutant) mice recapitulate the XLH phenotype. Dental disorders are prevalent in individuals with XLH; however, underlying dentoalveolar defects remain incompletely understood. We analyzed Hyp mouse dentoalveolar defects at 42 and 90 d postnatal to comparatively define effects of XLH on dental formation and function. Phex mRNA was expressed by odontoblasts (dentin), osteocytes (bone), and cementocytes (cellular cementum) in wild-type (WT) mice. Enamel density was unaffected, though enamel volume was significantly reduced in Hyp mice. Dentin defects in Hyp molars were indicated histologically by wide predentin, thin dentin, and extensive interglobular dentin, confirming micro-computed tomography (micro-CT) findings of reduced dentin volume and density. Acellular cementum was thin and showed periodontal ligament detachment. Mechanical testing indicated dramatically altered periodontal mechanical properties in Hyp versus WT mice. Hyp mandibles demonstrated expanded alveolar bone with accumulation of osteoid, and micro-CT confirmed decreased bone volume fraction and alveolar bone density. Cellular cementum area was significantly increased in Hyp versus WT molars owing to accumulation of hypomineralized cementoid. Histology, scanning electron microscopy, and nanoindentation revealed hypomineralized "halos" surrounding Hyp cementocyte and osteocyte lacunae. Three-dimensional micro-CT analyses confirmed larger cementocyte/osteocyte lacunae and significantly reduced perilacunar mineral density. While long bone and alveolar bone osteocytes in Hyp mice overexpressed fibroblast growth factor 23 (Fgf23), its expression in molars was much lower, with cementocyte Fgf23 expression particularly low. Expression and distribution of other selected markers were disturbed in Hyp versus WT long bone, alveolar bone, and cementum, including osteocyte/cementocyte marker dentin matrix protein 1 (Dmp1). This study reports for the first time a quantitative analysis of the Hyp mouse dentoalveolar phenotype, including all mineralized tissues. Novel insights into cellular cementum provide evidence for a role for cementocytes in perilacunar mineralization and cementum biology.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Animals , Calcification, Physiologic , Familial Hypophosphatemic Rickets/diagnostic imaging , Familial Hypophosphatemic Rickets/genetics , Female , Fibroblast Growth Factor-23 , Male , Mice , Mice, Inbred BALB C , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , X-Ray Microtomography
16.
J Dent Res ; 98(13): 1521-1531, 2019 12.
Article in English | MEDLINE | ID: mdl-31610730

ABSTRACT

The discoidin domain receptors, DDR1 and DDR2, are nonintegrin collagen receptors and tyrosine kinases. DDRs regulate cell functions, and their extracellular domains affect collagen fibrillogenesis and mineralization. Based on the collagenous nature of dentoalveolar tissues, we hypothesized that DDR1 plays an important role in dentoalveolar development and function. Radiography, micro-computed tomography (micro-CT), histology, histomorphometry, in situ hybridization (ISH), immunohistochemistry (IHC), and transmission electron microscopy (TEM) were used to analyze Ddr1 knockout (Ddr1-/-) mice and wild-type (WT) controls at 1, 2, and 9 mo, and ISH and quantitative polymerase chain reaction (qPCR) were employed to assess Ddr1/DDR1 messenger RNA expression in mouse and human tissues. Radiographic images showed normal molars but abnormal mandibular condyles, as well as alveolar bone loss in Ddr1-/- mice versus WT controls at 9 mo. Histological, histomorphometric, micro-CT, and TEM analyses indicated no differences in enamel or dentin Ddr1-/- versus WT molars. Total volumes (TVs) and bone volumes (BVs) of subchondral and ramus bone of Ddr1-/- versus WT condyles were increased and bone volume fraction (BV/TV) was reduced at 1 and 9 mo. There were no differences in alveolar bone volume at 1 mo, but at 9 mo, severe periodontal defects and significant alveolar bone loss (14%; P < 0.0001) were evident in Ddr1-/- versus WT mandibles. Histology, ISH, and IHC revealed disrupted junctional epithelium, connective tissue destruction, bacterial invasion, increased neutrophil infiltration, upregulation of cytokines including macrophage colony-stimulating factor, and 3-fold increased osteoclast numbers (P < 0.05) in Ddr1-/- versus WT periodontia at 9 mo. In normal mouse tissues, ISH and qPCR revealed Ddr1 expression in basal cell layers of the oral epithelia and in immune cells. We confirmed a similar expression pattern in human oral epithelium by ISH and qPCR. We propose that DDR1 plays an important role in periodontal homeostasis and that absence of DDR1 predisposes mice to periodontal breakdown.


Subject(s)
Discoidin Domain Receptor 1/genetics , Periodontal Atrophy/genetics , Animals , Collagen , Humans , Mice , Mice, Knockout , Osteoclasts , X-Ray Microtomography
17.
Adv Exp Med Biol ; 1148: 279-322, 2019.
Article in English | MEDLINE | ID: mdl-31482504

ABSTRACT

Hypophosphatasia (HPP) is an inherited disorder that affects bone and tooth mineralization characterized by low serum alkaline phosphatase. HPP is caused by loss-of-function mutations in the ALPL gene encoding the protein, tissue-nonspecific alkaline phosphatase (TNSALP). TNSALP is expressed by mineralizing cells of the skeleton and dentition and is associated with the mineralization process. Generalized reduction of activity of the TNSALP leads to accumulation of its substrates, including inorganic pyrophosphate (PPi) that inhibits physiological mineralization. This leads to defective skeletal mineralization, with manifestations including rickets, osteomalacia, fractures, and bone pain, all of which can result in multi-systemic complications with significant morbidity, as well as mortality in severe cases. Dental manifestations are nearly universal among affected individuals and feature most prominently premature loss of deciduous teeth. Management of HPP has been limited to supportive care until the introduction of a TNSALP enzyme replacement therapy (ERT), asfotase alfa (AA). AA ERT has proven to be transformative, improving survival in severely affected infants and increasing overall quality of life in children and adults with HPP. This chapter provides an overview of TNSALP expression and functions, summarizes HPP clinical types and pathologies, discusses early attempts at therapies for HPP, summarizes development of HPP mouse models, reviews design and validation of AA ERT, and provides up-to-date accounts of AA ERT efficacy in clinical trials and case reports, including therapeutic response, adverse effects, limitations, and potential future directions in therapy.


Subject(s)
Alkaline Phosphatase , Enzyme Replacement Therapy , Hypophosphatasia/therapy , Animals , Humans , Mice , Quality of Life
18.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180392, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31230573

ABSTRACT

The FLASHForward experimental facility is a high-performance test-bed for precision plasma wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionized gas. The plasma is created by ionizing gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases, the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma wakefield facility in the world with the immediate capability to develop, explore and benchmark high-average-power plasma wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

19.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20190215, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31230575

ABSTRACT

This introductory article is a synopsis of the status and prospects of particle-beam-driven plasma wakefield acceleration (PWFA). Conceptual and experimental breakthroughs obtained over the last years have initiated a rapid growth of the research field, and increased maturity of underlying technology allows an increasing number of research groups to engage in experimental R&D. We briefly describe the fundamental mechanisms of PWFA, from which its chief attractions arise. Most importantly, this is the capability of extremely rapid acceleration of electrons and positrons at gradients many orders of magnitude larger than in conventional accelerators. This allows the size of accelerator units to be shrunk from the kilometre to metre scale, and possibly the quality of accelerated electron beam output to be improved by orders of magnitude. In turn, such compact and high-quality accelerators are potentially transformative for applications across natural, material and life sciences. This overview provides contextual background for the manuscripts of this issue, resulting from a Theo Murphy meeting held in the summer of 2018. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

20.
Physiother Theory Pract ; 35(8): 787-796, 2019 Aug.
Article in English | MEDLINE | ID: mdl-29611774

ABSTRACT

Objective: To determine the frequency of physiotherapist-administered aerobic exercise testing/training, the proportion of physiotherapists who administer this testing/training, and the barriers that currently exist across different practice environments. A secondary objective is to identify the learning needs of physiotherapists for the development of an education curriculum in aerobic exercise testing and training with electrocardiograph (ECG) administration and interpretation. Design: National, cross-sectional survey. Participants: Registered physiotherapists practicing in Canada. Results: Out of 137 participants, most (75%) physiotherapists prescribed aerobic exercise on a regular basis (weekly); however, 65% had never conducted an aerobic exercise test. There were no significant differences in frequency of aerobic exercise testing across different practice environments or across years of physiotherapy experience. Physiotherapists perceived the main barriers to aerobic exercise testing as being a lack of equipment/space (78%), time (65%), and knowledge (56%). Although most (82%) were uncomfortable administering 12-lead ECG-monitored aerobic exercise tests, 60% stated they would be interested in learning more about ECG interpretation. Conclusion: This study found that physiotherapists are regularly implementing aerobic exercise. This exercise was infrequently guided by formal aerobic exercise testing, which could increase access to safe and effective exercise within the optimal aerobic training zone. As well, this could facilitate training in patients with cardiovascular diagnoses that require additional testing for medical clearance. Increased ECG training and access to equipment for physiotherapists may augment pre-screening aerobic exercise testing. This training should include learning the key arrhythmias for aerobic exercise test termination as defined by the American College of Sports Medicine.


Subject(s)
Exercise Test , Exercise Therapy/education , Exercise , Physical Therapists/education , Adult , Attitude of Health Personnel , Canada , Cross-Sectional Studies , Electrocardiography , Humans , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...