Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 352: 120007, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38184875

ABSTRACT

While forest management commonly seeks to increase carbon (C) capture and sequestration, in some settings, a high density of C storage may be detrimental to other land uses and ecosystem services. We study a forested, drinking-water-supply watershed to determine the effects of forest management on C storage with the implicit understanding that greater storage of C will lead to increased quantity of carbon exported hydrologically into a source-water reservoir. Using a custom implementation of CBM-CFS3, a Canadian model to simulate C transformations and movement in forested systems, and a custom forest disturbance and management model, we simulate various management scenarios and their C outcomes. The largest forest C pool, mineral soils, is very slow to change and manipulating DOC export through this pool would likely not be feasible within human management timescales. Other pools, in which C has lower residence time and from which C is more readily mobilized, are a more promising area for future research into hydrologic DOC export under varying management regimes. Our findings indicate that management activities can serve to reduce forest C storage, but further research is required to connect these outcomes to hydrologic export.


Subject(s)
Carbon , Ecosystem , Humans , Carbon/analysis , Canada , Forests , Water
2.
Environ Sci Technol ; 51(19): 11196-11204, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28858469

ABSTRACT

Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.


Subject(s)
Gasoline , Particulate Matter , Vehicle Emissions , Dust , Filtration , Particle Size , Porosity
3.
Res Rep Health Eff Inst ; (128): 1-37; discussion 39-47, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15916011

ABSTRACT

Using an in-line, real-time, in vivo exposure system, we investigated whether acute adverse effects of diesel exhaust (DE*) exposure involve neurogenic inflammation in the lungs via sensory nerve C fibers. A total of 168 female F344 rats (175 g, 8 weeks old) were randomly assigned to pretreatment with capsaicin or saline to deplete C-fiber neurotransmitters. In a 2 x 3 factorial design, groups of animals were then exposed nose-only to a low level of DE (LDE, 35.3 microg/m3), a high level of DE (HDE, 632.9 microg/m3), or side-stream cigarette smoke (CS, 0.4 mg/m3). Two control groups were exposed whole body to filtered air in the animal room (fRA) or unfiltered air in the diesel engine room (eRA), respectively. DE was taken directly from a heavy-duty Cummins N14 research engine operated at 75% throttle (California Air Resources Board [CARB] 8, mode 6). Exposure to DE or air was 4 hours/day, 5 days/week, for 3 weeks. Exposure to CS was for 4 hours/day for 7 days. Involvement of neurogenic inflammation in the response to DE or CS was assessed via comparison of plasma extravasation, a sensitive endpoint of neurogenic inflammation, between rats with and without capsaicin pretreatment. Lung injury was assessed via analysis of proinflammatory cytokines, respiratory permeability, and histopathology. Moreover, whether DE exposure affected the molecular mechanisms of neurogenic inflammation was analyzed through quantification of substance P (SP) and its primary neurokinin-1 (NK1) receptor at the gene and protein levels and through neutral endopeptidase (NEP) activity. DE and CS exposure induced dose-dependent plasma extravasation, which may play an important role in initiating the associated lung inflammation and injury. Exposure of rats to DE affected the SP signaling pathway as indicated by overexpression of the NK1 receptor or reduction of SP in the lung tissue. DE exposure consistently inactivated tissue NEP, a key factor that switches neurogenic inflammation from its physiological and protective functions to a role that increases and perpetuates lung injury. The roles of these overlapping neurokininergic mechanisms in the initiation of DE-associated lung injury are plausible, and these changes may contribute to DE-associated respiratory disorders. Capsaicin rats followed the same trends as those of saline animals when exposed to DE or CS: capsaicin rats did not have significantly different plasma extravasation in the airways or lung parenchyma compared to their corresponding controls. Histopathology evaluation likewise demonstrated the same degree of tissue changes, such as edema and alveolar macrophage collection, in capsaicin and saline rats after the same level of DE exposure. In summary, our data suggest that neurokininergic mechanisms may have been involved in DE-induced inflammatory conditions in rat lung but that C fibers did not appear to be involved under these exposure conditions. We believe that time-course or protein knockdown/knockout animal studies are required to characterize further the role of neurokininergic mechanisms in DE-induced lung injury.


Subject(s)
Lung/drug effects , Neurogenic Inflammation/chemically induced , Vehicle Emissions/toxicity , Administration, Intranasal , Animals , Female , Lung/innervation , Rats , Rats, Inbred F344
4.
Arch Toxicol ; 77(11): 638-50, 2003 Nov.
Article in English | MEDLINE | ID: mdl-13680092

ABSTRACT

This study characterizes the molecular neurotoxicity of diesel exhaust (DE) on the tachykinin substance P (SP) signaling system in the lungs. A total of 96 female Fischer 344/NH rats (approximately 175 g, approximately 4 weeks old) were randomly assigned to eight groups in a 2 x4 factorial design: capsaicin versus non-capsaicin (vehicle) pretreatment, and filtered room air versus two exposure levels of DE with diesel engine room control. The rats were exposed nose-only to room air or low (35.3 micro g/m(3)) and high concentrations (669.3 micro g/m(3)) particulates directly from a Cummins N14 research engine at 75% throttle for 4 h/day, 5 days/week, for 3 weeks. The findings showed that exposure to DE dose-dependently induced bronchopulmonary neurogenic inflammation, both in capsaicin- and vehicle-pretreated rats, as measured by plasma extravasation, edema, and inflammatory cells. DE inhalation affected the SP signaling processes, including stored SP depletion and the gene/protein overexpression for neurokinin-1 receptor. DE also significantly reduced the activity of neutral endopeptidase, a main degradation enzyme for SP. Consequently, these changes may be regarded as critical factors that switched neurogenic pulmonary responses from their protective functions to a detrimental role that perpetuates lung inflammation. These changes may possibly be associated with the mass concentration of DE particles due to their physico-chemical characteristics. Moreover, capsaicin-pretreated rats had more sensitivity to these levels of DE exposure due to stimulation of bronchopulmonary C-fibers. However, the effects of capsaicin treatment were not consistent and apparent in this study. Taken together, our findings suggest that neurokininergic mechanisms may possibly be involved in DE-induced lung inflammation, but that bronchopulmonary C-fibers did not dominate DE-induced inflammatory abnormalities.


Subject(s)
Bronchitis/chemically induced , Bronchitis/pathology , Neurogenic Inflammation/chemically induced , Neurogenic Inflammation/pathology , Pneumonia/chemically induced , Pneumonia/pathology , Signal Transduction/physiology , Substance P/physiology , Vehicle Emissions/toxicity , Animals , Capsaicin/toxicity , Endopeptidases/metabolism , Female , Immunoenzyme Techniques , Immunohistochemistry , Nerve Fibers, Unmyelinated/pathology , Neurons, Afferent/pathology , Particle Size , Radiopharmaceuticals , Rats , Rats, Inbred F344 , Receptors, Neurokinin-1/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Technetium Tc 99m Aggregated Albumin
SELECTION OF CITATIONS
SEARCH DETAIL
...