Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 92: 117-30, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27373670

ABSTRACT

Morphine is commonly used for pain management in preterm neonates. The aims of this study were to compare published models of neonatal pharmacokinetics of morphine and its metabolites with a new dataset, and to combine the characteristics of the best predictive models to design a meta-model for morphine and its metabolites in preterm neonates. Moreover, the concentration-analgesia relationship for morphine in this clinical setting was also investigated. A population of 30 preterm neonates (gestational age: 23-32weeks) received a loading dose of morphine (50-100µg/kg), followed by a continuous infusion (5-10µg/kg/h) until analgesia was no longer required. Pain was assessed using the Premature Infant Pain Profile. Five published population models were compared using numerical and graphical tests of goodness-of-fit and predictive performance. Population modelling was conducted using NONMEM® and the $PRIOR subroutine to describe the time-course of plasma concentrations of morphine, morphine-3-glucuronide, and morphine-6-glucuronide, and the concentration-analgesia relationship for morphine. No published model adequately described morphine concentrations in this new dataset. Previously published population pharmacokinetic models of morphine, morphine-3-glucuronide, and morphine-6-glucuronide were combined into a meta-model. The meta-model provided an adequate description of the time-course of morphine and the concentrations of its metabolites in preterm neonates. Allometric weight scaling was applied to all clearance and volume terms. Maturation of morphine clearance was described as a function of postmenstrual age, while maturation of metabolite elimination was described as a function of postnatal age. A clear relationship between morphine concentrations and pain score was not established.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Models, Biological , Morphine/pharmacokinetics , Analgesics, Opioid/blood , Analgesics, Opioid/therapeutic use , Female , Humans , Infant, Newborn , Infant, Premature , Male , Morphine/blood , Morphine/therapeutic use , Pain/blood , Pain/drug therapy
2.
Eur J Pharm Sci ; 66: 50-8, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25315409

ABSTRACT

The aim of this study was to develop population pharmacokinetic-pharmacodynamic models for morphine in experimental pain induced by skin heat and muscle pressure, and to evaluate the experimental pain models with regard to assessment of morphine pharmacodynamics. In a randomised, double-blind, placebo-controlled, crossover study, 39 healthy volunteers received an oral dose of 30mg morphine hydrochloride or placebo. Non-linear mixed effects modelling was used to describe the plasma concentrations of morphine and metabolites, and the analgesic effect of morphine on experimental pain in skin and muscle. Baseline pain metrics varied between individuals and occasions, and were described with interindividual and interoccasion variability. Placebo-response did not change with time. For both pain metrics, morphine effect was proportional to baseline pain and was described with a linear model with interindividual variability on drug effect slope and linked to an effect compartment for muscle pressure. The models indicate that a steady-state morphine concentration of 21ng/ml causes 33% and 0.84% increases in stimulus intensity from baseline for muscle pressure and skin heat, respectively. The population pharmacokinetic-pharmacodynamic models developed in this study indicate that mechanical stimulation of muscle is a more clinically relevant pain stimulus for the assessment of morphine pharmacodynamics than thermal stimulation of skin.


Subject(s)
Analgesics, Opioid/pharmacology , Analgesics, Opioid/pharmacokinetics , Models, Biological , Morphine/pharmacology , Morphine/pharmacokinetics , Pain/drug therapy , Analgesics, Opioid/blood , Analgesics, Opioid/metabolism , Cross-Over Studies , Double-Blind Method , Humans , Morphine/blood , Morphine/metabolism , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...