Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Nutr ESPEN ; 47: 96-105, 2022 02.
Article in English | MEDLINE | ID: mdl-35063249

ABSTRACT

BACKGROUND AND AIMS: Advice to drink plenty of fluid is common in respiratory infections. We assessed whether low fluid intake (dehydration) altered outcomes in adults with pneumonia. METHODS: We systematically reviewed trials increasing fluid intake and well-adjusted, well-powered observational studies assessing associations between markers of low-intake dehydration (fluid intake, serum osmolality, urea or blood urea nitrogen, urinary output, signs of dehydration) and mortality in adult pneumonia patients (with any type of pneumonia, including community acquired, health-care acquired, aspiration, COVID-19 and mixed types). Medline, Embase, CENTRAL, references of reviews and included studies were searched to 30/10/2020. Studies were assessed for inclusion, risk of bias and data extracted independently in duplicate. We employed random-effects meta-analysis, sensitivity analyses, subgrouping and GRADE assessment. Prospero registration: CRD42020182599. RESULTS: We identified one trial, 20 well-adjusted cohort studies and one case-control study. None suggested that more fluid (hydration) was associated with harm. Ten of 13 well-powered observational studies found statistically significant positive associations in adjusted analyses between dehydration and medium-term mortality. The other three studies found no significant effect. Meta-analysis suggested doubled odds of medium-term mortality in dehydrated (compared to hydrated) pneumonia patients (GRADE moderate-quality evidence, OR 2.3, 95% CI 1.8 to 2.8, 8619 deaths in 128,319 participants). Heterogeneity was explained by a dose effect (greater dehydration increased risk of mortality further), and the effect was consistent across types of pneumonia (including community-acquired, hospital-acquired, aspiration, nursing and health-care associated, and mixed pneumonia), age and setting (community or hospital). The single trial found that educating pneumonia patients to drink ≥1.5 L fluid/d alongside lifestyle advice increased fluid intake and reduced subsequent healthcare use. No studies in COVID-19 pneumonia met the inclusion criteria, but 70% of those hospitalised with COVID-19 have pneumonia. Smaller COVID-19 studies suggested that hydration is as important in COVID-19 pneumonia mortality as in other pneumonias. CONCLUSIONS: We found consistent moderate-quality evidence mainly from observational studies that improving hydration reduces the risk of medium-term mortality in all types of pneumonia. It is remarkable that while many studies included dehydration as a potential confounder, and major pneumonia risk scores include measures of hydration, optimal fluid volume and the effect of supporting hydration have not been assessed in randomised controlled trials of people with pneumonia. Such trials, are needed as potential benefits may be large, rapid and implemented at low cost. Supporting hydration and reversing dehydration has the potential to have rapid positive impacts on pneumonia outcomes, and perhaps also COVID-19 pneumonia outcomes, in older adults.


Subject(s)
COVID-19 , Pneumonia , Aged , Case-Control Studies , Drinking , Humans , SARS-CoV-2
2.
Cochrane Database Syst Rev ; 8: CD011737, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32827219

ABSTRACT

BACKGROUND: Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES: To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS: We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA: Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS: We included 15 randomised controlled trials (RCTs) (16 comparisons, 56,675 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 17% (risk ratio (RR) 0.83; 95% confidence interval (CI) 0.70 to 0.98, 12 trials, 53,758 participants of whom 8% had a cardiovascular event, I² = 67%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 53. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS: The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.


Subject(s)
Cardiovascular Diseases/prevention & control , Dietary Fats/administration & dosage , Fatty Acids/administration & dosage , Adult , Cardiovascular Diseases/mortality , Cause of Death , Cholesterol/blood , Dietary Carbohydrates/administration & dosage , Dietary Fats, Unsaturated/administration & dosage , Dietary Proteins/administration & dosage , Energy Intake , Female , Humans , Male , Myocardial Infarction/mortality , Myocardial Infarction/prevention & control , Randomized Controlled Trials as Topic , Stroke/prevention & control
3.
Cochrane Database Syst Rev ; 5: CD011737, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32428300

ABSTRACT

BACKGROUND: Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES: To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS: We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA: Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS: We included 15 randomised controlled trials (RCTs) (16 comparisons, ~59,000 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 21% (risk ratio (RR) 0.79; 95% confidence interval (CI) 0.66 to 0.93, 11 trials, 53,300 participants of whom 8% had a cardiovascular event, I² = 65%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 32. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS: The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events.


Subject(s)
Cardiovascular Diseases/prevention & control , Dietary Fats/administration & dosage , Fatty Acids/administration & dosage , Adult , Cardiovascular Diseases/mortality , Cause of Death , Cholesterol/blood , Dietary Carbohydrates/administration & dosage , Dietary Fats, Unsaturated/administration & dosage , Dietary Proteins/administration & dosage , Energy Intake , Female , Humans , Male , Myocardial Infarction/mortality , Myocardial Infarction/prevention & control , Randomized Controlled Trials as Topic , Stroke/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...