Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 11(4): e0005504, 2017 04.
Article in English | MEDLINE | ID: mdl-28414744

ABSTRACT

BACKGROUND: Indoor residual spraying (IRS) with DDT has been the primary strategy for control of the visceral leishmaniasis (VL) vector Phlebotomus argentipes in India but efficacy may be compromised by resistance. Synthetic pyrethroids are now being introduced for IRS, but with a shared target site, the para voltage-gated sodium channel (VGSC), mutations affecting both insecticide classes could provide cross-resistance and represent a threat to sustainable IRS-based disease control. METHODOLOGY/PRINCIPAL FINDINGS: A region of the Vgsc gene was sequenced in P. argentipes from the VL hotspot of Bihar, India. Two knockdown resistance (kdr) mutations were detected at codon 1014 (L1014F and L1014S), each common in mosquitoes, but previously unknown in phlebotomines. Both kdr mutations appear largely recessive, but as homozygotes (especially 1014F/F) or as 1014F/S heterozygotes exert a strong effect on DDT resistance, and significantly predict survivorship to class II pyrethroids in short-duration bioassays. The mutations are present at high frequency in wild P. argentipes populations from Bihar, with 1014F significantly more common in higher VL areas. CONCLUSIONS/SIGNIFICANCE: The Vgsc mutations detected appear to be a primary mechanism underlying DDT resistance in P. argentipes and a contributory factor in reduced pyrethroid susceptibility, suggesting a potential impact if P. argentipes are subjected to suboptimal levels of pyrethroid exposure, or additional resistance mechanisms evolve. The assays to detect kdr frequency changes provide a sensitive, high-throughput monitoring tool to detecting spatial and temporal variation in resistance in P. argentipes.


Subject(s)
Disease Vectors , Insecticide Resistance , Insecticides/pharmacology , Mutation, Missense , Phlebotomus/drug effects , Voltage-Gated Sodium Channels/genetics , Animals , DDT/pharmacology , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Female , Gene Frequency , India , Leishmaniasis, Visceral/transmission , Pyrethrins/pharmacology , Sequence Analysis, DNA
2.
PLoS One ; 11(5): e0155746, 2016.
Article in English | MEDLINE | ID: mdl-27228026

ABSTRACT

BACKGROUND: A longitudinal Anopheles gambiae s.l. insecticide resistance monitoring programme was established in four sentinel sites in Chad 2008-2010. When this programme ended, only sporadic bioassays were performed in a small number of sites. METHODS: WHO diagnostic dose assays were used to measure the prevalence of insecticide resistance to 0.1% bendiocarb, 4% DDT, 0.05% deltamethrin, 1% fenitrothion, and 0.75% permethrin in the main malaria vectors at the beginning and end of the malaria transmission season for three years 2008-2010, with subsequent collections in 2011 and 2014. Species and molecular identification of An. gambiae M and S forms and kdr genotyping was performed using PCR-RLFP; circumsporozoite status was assessed using ELISA. RESULTS: Between 2008 and 2010, significant changes in insecticide resistance profiles to deltamethrin and permethrin were seen in 2 of the sites. No significant changes were seen in resistance to DDT in any site during the study period. Testing performed after the period of routine monitoring had ended showed dramatic increases to DDT and pyrethroid resistance in 3 sites. No resistance to organophosphate or carbamate insecticides was detected. An. arabiensis was the predominate member of the An. gambiae complex in all 4 sites; adult collections showed temporal variation in species composition in only 1 site. Kdr analysis identified both 1014F and 1014S alleles in An. gambiae S only. Circumsporozoite analysis showed the highest vector infection rates were present in Donia, a site with extensive use of agricultural insecticides. CONCLUSIONS: During the monitoring gap of four years, significant changes occurred in resistance prevalence in 3 of the 4 sites (p = <0.001), endangering the efficacy of currently implemented malaria control interventions. Significant changes in insecticide resistance profiles and a lack of kdr resistance alleles in adult populations highlight the urgent need for comprehensive entomological monitoring to be implemented and sustained in country.


Subject(s)
Anopheles/drug effects , Disease Vectors , Insecticide Resistance , Insecticides/pharmacology , Malaria/diagnosis , Malaria/drug therapy , Animals , Anopheles/genetics , Insect Proteins/genetics , Longitudinal Studies , Malaria/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...