Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet ; 391(10140): 2619-2630, 2018 06 30.
Article in English | MEDLINE | ID: mdl-29910042

ABSTRACT

BACKGROUND: B cells produce alloantibodies and activate alloreactive T cells, negatively affecting kidney transplant survival. By contrast, regulatory B cells are associated with transplant tolerance. Immunotherapies are needed that inhibit B-cell effector function, including antibody secretion, while sparing regulators and minimising infection risk. B lymphocyte stimulator (BLyS) is a cytokine that promotes B-cell activation and has not previously been targeted in kidney transplant recipients. We aimed to determine the safety and activity of an anti-BLyS antibody, belimumab, in addition to standard-of-care immunosuppression in adult kidney transplant recipients. We used an experimental medicine study design with multiple secondary and exploratory endpoints to gain further insight into the effect of belimumab on the generation of de-novo IgG and on the regulatory B-cell compartment. METHODS: We undertook a double-blind, randomised, placebo-controlled phase 2 trial of belimumab, in addition to standard-of-care immunosuppression (basiliximab, mycophenolate mofetil, tacrolimus, and prednisolone) at two centres, Addenbrooke's Hospital, Cambridge, UK, and Guy's and St Thomas' Hospital, London, UK. Participants were eligible if they were aged 18-75 years and receiving a kidney transplant and were planned to receive standard-of-care immunosuppression. Participants were randomly assigned (1:1) to receive either intravenous belimumab 10 mg per kg bodyweight or placebo, given at day 0, 14, and 28, and then every 4 weeks for a total of seven infusions. The co-primary endpoints were safety and change in the concentration of naive B cells from baseline to week 24, both of which were analysed in all patients who received a transplant and at least one dose of drug or placebo (the modified intention-to-treat [mITT] population). This trial has been completed and is registered with ClinicalTrials.gov, NCT01536379, and EudraCT, 2011-006215-56. FINDINGS: Between Sept 13, 2013, and Feb 8, 2015, of 303 patients assessed for eligibility, 28 kidney transplant recipients were randomly assigned to receive belimumab (n=14) or placebo (n=14). 25 patients (12 [86%] patients assigned to the belimumab group and 13 [93%] patients assigned to the placebo group) received a transplant and were included in the mITT population. We observed similar proportions of adverse events in the belimumab and placebo groups, including serious infections (one [8%] of 12 in the belimumab group and five [38%] of 13 in the placebo group during the 6-month on-treatment phase; and none in the belimumab group and two [15%] in the placebo group during the 6-month follow-up). In the on-treatment phase, one patient in the placebo group died because of fatal myocardial infarction and acute cardiac failure. The co-primary endpoint of a reduction in naive B cells from baseline to week 24 was not met. Treatment with belimumab did not significantly reduce the number of naive B cells from baseline to week 24 (adjusted mean difference between the belimumab and placebo treatment groups -34·4 cells per µL, 95% CI -109·5 to 40·7). INTERPRETATION: Belimumab might be a useful adjunct to standard-of-care immunosuppression in renal transplantation, with no major increased risk of infection and potential beneficial effects on humoral alloimmunity. FUNDING: GlaxoSmithKline.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Graft Survival/drug effects , Immunosuppression Therapy/methods , Immunosuppressive Agents/administration & dosage , Kidney Transplantation/methods , Administration, Intravenous , Adult , Aged , Double-Blind Method , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged
2.
Cell Stem Cell ; 13(2): 161-74, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23910083

ABSTRACT

In addition to well-characterized CD34(+) hematopoietic stem and progenitor cells (HSPCs), the human hematopoietic stem cell (HSC) hierarchy contains a rare CD34(-) population with severe combined immunodeficiency-repopulating capacity. However, little is known about the molecular characteristics of these CD34(-) cells or their relationship to the CD34(+) populations. Here, we show that the self-renewing Lin(-)CD34(-)CD38(-)CD93(hi) population contains cells that not only function as HSCs, but can also be placed above the CD34(+) populations in the hematopoietic hierarchy. These cells have an active Notch pathway, in which signaling through Delta4 is crucial for maintenance of the primitive state, and combined signals from Jagged1 and TGF-ß are important in controlling its quiescence. They are also refractory to proliferative signals and show a repressed canonical Wnt pathway, in part regulated by Notch. Overall, therefore, CD34(-) cells represent an immature and quiescent human HSC population maintained through a distinctive network of cellular signaling interactions.


Subject(s)
Antigens, CD34/metabolism , Cell Lineage , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Signal Transduction , ADP-ribosyl Cyclase 1/metabolism , Bone Marrow Cells/cytology , Cell Differentiation , Cell Proliferation , Fetal Blood/cytology , Humans , Membrane Glycoproteins/metabolism , Receptors, Complement/metabolism , Receptors, Notch/metabolism , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway
3.
Proc Natl Acad Sci U S A ; 107(30): 13414-9, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20616004

ABSTRACT

Thymus organogenesis requires coordinated interactions of multiple cell types, including neural crest (NC) cells, to orchestrate the formation, separation, and subsequent migration of the developing thymus from the third pharyngeal pouch to the thoracic cavity. The molecular mechanisms driving these processes are unclear; however, NC-derived mesenchyme has been shown to play an important role. Here, we show that, in the absence of ephrin-B2 expression on thymic NC-derived mesenchyme, the thymus remains in the cervical area instead of migrating into the thoracic cavity. Analysis of individual NC-derived thymic mesenchymal cells shows that, in the absence of ephrin-B2, their motility is impaired as a result of defective EphB receptor signaling. This implies a NC-derived cell-specific role of EphB-ephrin-B2 interactions in the collective migration of the thymic rudiment during organogenesis.


Subject(s)
Ephrin-B2/metabolism , Organogenesis , Receptors, Eph Family/metabolism , Thymus Gland/embryology , Animals , Cell Movement , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Ephrin-B2/genetics , Female , Flow Cytometry , Immunohistochemistry , Male , Mesoderm/cytology , Mesoderm/metabolism , Mice , Mice, Knockout , Microscopy, Confocal , Nervous System/cytology , Nervous System/embryology , Nervous System/metabolism , Protein Binding , Thymus Gland/cytology , Thymus Gland/innervation
4.
J Immunol ; 184(10): 5686-95, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20404270

ABSTRACT

Nuclear architecture and chromatin reorganization have recently been shown to orchestrate gene expression and act as key players in developmental pathways. To investigate how regulatory elements in the mouse CD8 gene locus are arranged in space and in relation to each other, three-dimensional fluorescence in situ hybridization and chromosome conformation capture techniques were employed to monitor the repositioning of the locus in relation to its subchromosomal territory and to identify long-range interactions between the different elements during development. Our data demonstrate that CD8 gene expression in murine lymphocytes is accompanied by the relocation of the locus outside its subchromosomal territory. Similar observations in the CD4 locus point to a rather general phenomenon during T cell development. Furthermore, we show that this relocation of the CD8 gene locus is associated with a clustering of regulatory elements forming a tight active chromatin hub in CD8-expressing cells. In contrast, in nonexpressing cells, the gene remains close to the main body of its chromosomal domain and the regulatory elements appear not to interact with each other.


Subject(s)
CD8 Antigens/genetics , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Nucleus/genetics , Gene Expression Regulation, Developmental/immunology , Thymus Gland/immunology , Thymus Gland/metabolism , Animals , CD4 Antigens/genetics , CD8 Antigens/biosynthesis , Chromosome Positioning/genetics , DNA Probes/genetics , Female , Imaging, Three-Dimensional , In Situ Hybridization, Fluorescence , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Protein Structure, Tertiary/genetics , Thymus Gland/cytology
5.
Nature ; 446(7135): 547-51, 2007 Mar 29.
Article in English | MEDLINE | ID: mdl-17322904

ABSTRACT

Normal organogenesis requires co-ordinate development and interaction of multiple cell types, and is seemingly governed by tissue specific factors. Lymphoid organogenesis during embryonic life is dependent on molecules the temporal expression of which is tightly regulated. During this process, haematopoietic 'inducer' cells interact with stromal 'organizer' cells, giving rise to the lymphoid organ primordia. Here we show that the haematopoietic cells in the gut exhibit a random pattern of motility before aggregation into the primordia of Peyer's patches, a major component of the gut-associated lymphoid tissue. We further show that a CD45+CD4-CD3-Il7Ralpha-c-Kit+CD11c+ haematopoietic population expressing lymphotoxin has an important role in the formation of Peyer's patches. A subset of these cells expresses the receptor tyrosine kinase RET, which is essential for mammalian enteric nervous system formation. We demonstrate that RET signalling is also crucial for Peyer's patch formation. Functional genetic analysis revealed that Gfra3-deficiency results in impairment of Peyer's patch development, suggesting that the signalling axis RET/GFRalpha3/ARTN is involved in this process. To support this hypothesis, we show that the RET ligand ARTN is a strong attractant of gut haematopoietic cells, inducing the formation of ectopic Peyer's patch-like structures. Our work strongly suggests that the RET signalling pathway, by regulating the development of both the nervous and lymphoid system in the gut, has a key role in the molecular mechanisms that orchestrate intestine organogenesis.


Subject(s)
Organogenesis , Peyer's Patches/embryology , Peyer's Patches/enzymology , Proto-Oncogene Proteins c-ret/metabolism , Animals , CD2 Antigens/genetics , CD2 Antigens/metabolism , Cell Movement , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Hematopoiesis , Humans , Intestines/cytology , Intestines/embryology , Intestines/enzymology , Intestines/immunology , Mice , Mice, Transgenic , Mutation/genetics , Nerve Tissue Proteins/metabolism , Peyer's Patches/cytology , Proto-Oncogene Proteins c-ret/genetics , Signal Transduction
6.
Proc Natl Acad Sci U S A ; 103(36): 13457-62, 2006 Sep 05.
Article in English | MEDLINE | ID: mdl-16938836

ABSTRACT

Lymph node (LN) development depends on prenatal interactions occurring between LN inducer and LN organizer cells. We have distinguished defects in LN formation due to failure in embryonic development (aly/aly) from defects in postnatal maturation (Il2rgamma(-/-)Rag2(-/-)). Both mutant strains form normal primordial LNs with differing fate. In aly/aly mice, the LN primordium dissipates irreversibly late in gestation; in contrast, Il2rgamma(-/-)Rag2(-/-) LN anlage persists for a week after birth but disperses subsequently, a process reversible by neonatal transfer of WT IL7r(+) TCR(+) T or natural killer (NK) cells, suggesting a role for IL7/IL7r interactions. Thus, we reveal a unique stage of postnatal LN development during which mature lymphocytes and IL7/IL7r interactions may play an important role.


Subject(s)
Interleukin-7/immunology , Killer Cells, Natural/immunology , Lymph Nodes/immunology , Receptors, Interleukin-7/genetics , T-Lymphocytes/immunology , Adoptive Transfer , Animals , Animals, Newborn , DNA, Complementary , Green Fluorescent Proteins/metabolism , Lymph Nodes/embryology , Mice , Mice, Knockout , Mice, Mutant Strains , Models, Biological , Mutation , NF-kappa B/genetics , Receptors, Interleukin-7/immunology , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...