Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Article in English | MEDLINE | ID: mdl-37998260

ABSTRACT

This article discusses the contention in the commented-upon paper that Brillouin precursors generated by 5G New Radio (5G NR) and other cellular systems are a possible cause of tissue damage at deeper layers of tissue than the power penetration depth of the carrier frequency. The original theory for Brillouin precursors from pulsed radiofrequency signals (RF-EMF) and speculation about their possible health effects dates back to the 1990's and was based on studies of the propagation of very short (nanosecond) ultrawide-bandwidth RF pulses through water. This assumption is not correct for cellular telephone signals due to their narrow bandwidth. The commented-on paper provides no alternative rationale as to why Brillouin effects should cause tissue damage from RF-EMF radiation from cellular and other communications systems. Other inaccuracies in this paper concerning thermal responses of tissue to RF-EMF are also noted.


Subject(s)
Cell Phone , Electromagnetic Fields , Electromagnetic Fields/adverse effects , Public Health , Environmental Exposure , Radio Waves/adverse effects
2.
Int J Radiat Biol ; 99(7): 1016-1026, 2023.
Article in English | MEDLINE | ID: mdl-37036431

ABSTRACT

PURPOSE: This review considers issues related to interpreting the mixed legacy of >300 papers published during the past three decades on possible genotoxic effects of exposure of human and animal tissues to radiofrequency electromagnetic fields (RF-EMF). The main paper reviews the evolution of consensus guidelines for genotoxicity testing and the increasing emphasis on systematic reviews for evaluation of scientific studies for use in health risk assessments. An Appendix considers some issues in assessing the bioeffects literature by examining a subset of genotoxicity publications that employed the comet assay. While most studies found no statistically significant effects of exposure, a significant minority of studies (chiefly, in vivo studies) reported statistically significant effects of exposure. The quality of the studies was highly variable; while several studies were meticulously done and documented, none of these studies were compliant with currently accepted guidelines such as those of the Organization for Economic Cooperation and Development (OECD). Evaluation of the studies using risk of bias (RoB) criteria showed that, in this sample of studies, higher quality studies were less likely to find statistically significant results than those of lower quality. CONCLUSION: The authors conclude that statistical significance should be only one consideration in evaluation of bioeffects studies. Simply listing 'statistically' significant effects identified using null hypothesis testing and the criterion p < 0.05 for statistical significance is misleading and uninformative in assessing health risks of exposure. A careful synthesis of evidence is needed, including assessment of study validity, biological significance of reported effects, and coherence of study results with those of other related studies.The authors recommend that all future RF genotoxicity studies intended for use in human health risk assessments and evaluations of the literature should be done in compliance with accepted quality guidelines, i.e. OECD or equivalent guidelines for genotoxicity screening studies and PRISMA or other accepted guideline for reviews of the literature. The positive studies in this group should be redone with tighter quality control to establish the reliability of the findings.


Subject(s)
DNA Damage , Electromagnetic Fields , Animals , Humans , Reproducibility of Results , Comet Assay , Electromagnetic Fields/adverse effects , Mutagenicity Tests , Radio Waves/adverse effects
3.
Article in English | MEDLINE | ID: mdl-35206253

ABSTRACT

This commentary, by three authors with an aggregate experience of more than a century in technology and health and safety studies concerning radiofrequency (RF) energy, asks what has been learned over the past 75 years of research on radiofrequency and health, focusing on technologies for exposure assessment and dosimetry. Research programs on health and safety of RF exposure began in the 1950s, initially motivated by occupational health concerns for military personnel, and later to address public concerns about exposures to RF energy from environmental sources and near-field exposures from RF transmitting devices such as mobile phones that are used near the body. While this research largely focused on the biological effects of RF energy, it also led to important improvements in exposure assessment and dosimetry. This work in the aggregate has made RF energy one of the best studied potential technological hazards and represents a productive response by large numbers of scientists and engineers, working in many countries and supported by diverse funding agencies, to the ever rapidly evolving uses of the electromagnetic spectrum. This review comments on present needs of the field, which include raising the quality of dosimetry in many RF bioeffects studies and developing improved exposure/dosimetric techniques for the higher microwave frequencies to be used by forthcoming communications technologies. At present, however, the major uncertainties in dosimetric modeling/exposure assessment are likely to be related to the inherent variability in real-world exposures, rather than imprecision in measurement technologies.


Subject(s)
Cell Phone , Electromagnetic Fields , Environmental Exposure , Microwaves , Radio Waves/adverse effects , Radiometry
5.
Front Public Health ; 10: 1118762, 2022.
Article in English | MEDLINE | ID: mdl-36699929

Subject(s)
Microwaves
6.
Health Phys ; 121(3): 234-247, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34261892

ABSTRACT

ABSTRACT: Two major sets of exposure limits for radiofrequency (RF) radiation, those of the International Commission on Nonionizing Radiation Protection (ICNIRP 2020) and the Institute of Electrical and Electronics Engineers (IEEE C95.1-2019), have recently been revised and updated with significant changes in limits above 6 GHz through the millimeter wave (mm-wave) band (30-300 GHz). This review compares available data on thermal damage and pain from exposure to RF energy above 6 GHz with corresponding data from infrared energy and other heat sources and estimates safety factors that are incorporated in the IEEE and ICNIRP RF exposure limits. The benchmarks for damage are the same as used in ICNIRP IR limits: minimal epithelial damage to cornea and first-degree burn (erythema in skin observable within 48 h after exposure). The data suggest that limiting thermal hazard to skin is cutaneous pain for exposure durations less than ≈20 min and thermal damage for longer exposures. Limitations on available data and thermal models are noted. However, data on RF and IR thermal damage and pain thresholds show that exposures far above current ICNIRP and IEEE limits would be required to produce thermally hazardous effects. This review focuses exclusively on thermal hazards from RF exposures above 6 GHz to skin and the cornea, which are the most exposed tissues in the considered frequency range.


Subject(s)
Radiation Protection , Radio Waves , Cornea , Radio Waves/adverse effects , Temperature
7.
Radiat Res ; 196(4): 417-422, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34270779

ABSTRACT

This commentary considers research needs for radiofrequency (RF) energy above 6 GHz, including in the "high band" of 5G New Radio (NR) communications systems that exists just beneath the mm-wave band (30-300 GHz). As of late 2020, approximately 100 RF bioeffects studies have been published involving exposures above 6 GHz, encompassing a wide range of exposure levels and frequencies. A majority of these studies report statistically significant effects of exposure, many at exposures within international safety limits. This commentary examines 31 genetic damage studies involving RF exposures above 6 GHz in the context of two sets of quality-assessment criteria: 1. "Risk of bias" (RoB) criteria used for systematic reviews of health-related studies; and 2. a broader set of criteria for research quality from a different scholarly approach (metascience). The 31 studies report several statistically significant effects of exposure on different markers for genetic damage. These effects, if real, would have great potential significance for carcinogen risk assessment. However, the studies as a group have significant technical weaknesses, including small size, failure to meet multiple RoB criteria, naïve use of statistics, and lack of prespecified hypotheses and methods of analysis, all of which increase the chances of false discovery. Here we propose a "carrot" (adequate funding to support high-quality research) and a "stick" (more stringent review of bioeffects manuscripts, including explicit instructions to reviewers to assess study quality) approach to increase the reliability of RF bioeffects studies to facilitate health agency reviews of this socially controversial topic.


Subject(s)
Radio Waves , Systematic Reviews as Topic
8.
Health Phys ; 120(5): 525-531, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33760769

ABSTRACT

ABSTRACT: This study examines the nonuniform exposure to the cornea from incident millimeter waves at 94-100 GHz. Two previous studies measured temperature increases in the rhesus cornea exposed to brief (1-6 s) pulses of high-fluence millimeter waves (94 GHz), one of which also estimated thresholds for corneal damage (reported as ED50, the dose resulting in a visible lesion 50% of the time). Both studies noted large variations in the temperature increase across the surface of the cornea due to wave interference effects. This study examines this variability using high-resolution simulations of mm-wave absorption and temperature increase in the human cornea from exposures to plane wave energy at 100 GHz. Calculations are based on an earlier study. The simulations show that the peak temperature increases in the cornea from short exposures (up to 10 s) to high-intensity mm-wave pulses are 1.7-2.8 times the median increase depending on the polarization of the incident energy. A simple one-dimensional "baseline" model provides a good estimate of the median temperature increase in the cornea. Two different estimates are presented for the thresholds for producing thermal lesions, expressed in terms of the minimum fluence of incident 100 GHz pulses. The first estimate is based on thresholds for thermal damage from pulsed infrared energy, and the second is based on a thermal damage model. The mm-wave pulses presently considered far exceed current IEEE or ICNIRP exposure limits but may be produced by some nonlethal weapons systems. Interference effects due to wave reflections from structures in and near the eye result in highly localized variations in energy absorbed in the cornea and surrounding facial tissues and are important to consider in a hazard analysis for exposures to intense pulsed millimeter waves.


Subject(s)
Body Temperature , Cornea , Radio Waves , Temperature
9.
Phys Med Biol ; 66(8)2021 04 14.
Article in English | MEDLINE | ID: mdl-33761473

ABSTRACT

International guidelines/standards for human protection from electromagnetic fields have been revised recently, especially for frequencies above 6 GHz where new wireless communication systems have been deployed. Above this frequency a new physical quantity 'absorbed/epithelial power density' has been adopted as a dose metric. Then, the permissible level of external field strength/power density is derived for practical assessment. In addition, a new physical quantity, fluence or absorbed energy density, is introduced for protection from brief pulses (especially for shorter than 10 s). These limits were explicitly designed to avoid excessive increases in tissue temperature, based on electromagnetic and thermal modeling studies but supported by experimental data where available. This paper reviews the studies on the computational modeling/dosimetry which are related to the revision of the guidelines/standards. The comparisons with experimental data as well as an analytic solution are also been presented. Future research needs and additional comments on the revision will also be mentioned.


Subject(s)
Radio Waves , Body Temperature , Electromagnetic Fields/adverse effects , Humans , Radio Waves/adverse effects , Radiometry , Temperature
10.
11.
PeerJ ; 8: e8898, 2020.
Article in English | MEDLINE | ID: mdl-32355574

ABSTRACT

Landbird vital rates, such as productivity and adult survivorship, can be estimated by modeling mist-netting capture data. The proportion in which an adult breeding bird is 1 year of age (a "yearling"), however, has been studied only minimally in a few landbird species. Here we relate yearling proportion to habitat-structure covariates, including reclamation age, in a boreal forest landbird community. Data were collected at 35 constant-effort mist-netting stations over a 6-year period, and consisted of 12,714 captures of adults, of 29 landbird species, including 4,943 captures of yearlings. Accuracy of age determination (yearling or older) was assessed based on recapture data and error rates were estimated at a mean of 8.1% (range 0.0-19.4%) among the 29 species, with 20 species showing age-error rates <10%. The estimated mean yearling proportion was 0.407, ranging from 0.178 to 0.613 among species. Remote-sensed Enhanced Vegetation Index (EVI), a measure of habitat greenness, was positively correlated with age since reclamation up to 20 years, at which time it became comparable to that of natural stations. The probability of capturing a yearling for species associated with mature forest was lower at stations with higher EVI and the opposite was the case for species favoring successional habitats. These results suggest that yearling birds are being excluded from preferred breeding habitats by older birds through despotism and/or that yearlings are simply selecting poorer habitat due to lack of breeding experience or other factors. This dynamic appears to be operating in multiple species within this forest landbird community. Captured yearlings may also be "floaters", or non-breeding individuals not holding territories. However, presuming that yearlings show lower reproductive success whether floating or not, our results suggest that stations with high yearling proportions could be located within sink as opposed to source habitats. Overall, we infer that yearling proportion may become an important vital-rate measure of habitat quality and reclamation efforts, when combined with indices of population size, productivity, reproductive condition and survivorship.

14.
Sci Total Environ ; 699: 134277, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31689668

ABSTRACT

Oil sands developments release acidifying compounds (SO2 and NO2) with the potential for acidifying deposition and impacts to forest health. This article integrates the findings presented in the Oil Sands Forest Health Special Issue, which reports on the results of 20 years of forest health monitoring, and addresses the key questions asked by WBEA's Forest Health Monitoring (FHM) Program: 1) is there evidence of deposition affecting the environment?, 2) have there been changes in deposition or effects over time?, 3) do acid deposition levels require management intervention?, 4) what are major sources of deposited substances? and 5) how can the program be improved? Deposition of sulphur, nitrogen, base cations (BC), polycyclic aromatic compounds and trace elements decline exponentially with distance from sources. There is little evidence for acidification effects on forest soils or on understory plant communities or tree growth, but there is evidence of nitrogen accumulation in jack pine needles and fertilization effects on understory plant communities. Sulphur, BC and trace metal concentrations in lichens increased between 2008 and 2014. Source apportionment studies suggest fugitive dust in proximity to mining is a primary source of BC, trace element and organic compound deposition, and BC deposition may be neutralizing acidifying deposition. Sulphur accumulation in soils and nitrogen effects on vegetation may indicate early stages of acidification. Deposition estimates for sites close to emissions sources exceed proposed regulatory trigger levels, suggesting a detailed assessment of acidification risk close to the emission sources is warranted. However, there is no evidence of widespread acidification as suggested by recent modeling studies, likely due to high BC deposition. FHM Program evolution should include continued integration with modeling approaches, ongoing collection and assessment of monitoring data and testing for change over time, and addition of monitoring sites to fill gaps in regional coverage.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Forests , Oil and Gas Fields , Lichens , Models, Theoretical , Nitrogen/analysis , Organic Chemicals , Pinus , Sulfur/analysis , Trees
16.
Sci Total Environ ; 686: 345-359, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31181521

ABSTRACT

The expansion of oil sands resource development in the Athabasca Oil Sands Region in the early 1990's led to concerns regarding the potential ecological and health effects of increased emissions and deposition of acidic substances. Conditions attached to a 1994 approval for an oil sands facility expansion led to the creation of the Wood Buffalo Environmental Association, and its Terrestrial Environmental Effects Monitoring committee. This multi-stakeholder body was tasked with development and operation of an environmental (forest health) monitoring program for the detection of ecological responses to atmospheric emissions and deposition. Initially focused on acid deposition monitoring, jack pine forest, growing on sandy soils with limited acid buffering capacity, was selected as the receptor system. An initial set of 10 monitoring locations was established using the Canadian Acid Rain Network Early Warning System methodology (since increased to 27, with three lost to development). Ecological monitoring is on a 6-year cycle, with concurrent measures of soil, needle and lichen chemistry, and tree and understory condition, together with ongoing measurements of air quality and atmospheric deposition. Because jack pine forest edges facing the emissions sources were expected to be more exposed to acidic emissions, evaluation of stand edge monitoring locations began in 2008. Monitoring of a targeted suite of indicators began in 2012 at 25 jack pine stand edge monitoring sites. This special issue presents the results derived from biophysical sampling campaigns (1998 to 2013), coupled with ongoing ambient atmospheric, deposition and epiphytic lichen monitoring (data through 2017) and source apportionment studies, as well as papers contributed by others engaged in regional research and monitoring programs. The Forest Health Monitoring Program provides data supportive of regulatory and stakeholder evaluations of environmental quality, and is adaptive to new needs, extreme environmental events and technological development while providing continuity of monitoring.

18.
IEEE Pulse ; 10(1): 22-25, 2019.
Article in English | MEDLINE | ID: mdl-30872210

ABSTRACT

In September 2017, the U.S. Food and Drug Administration (FDA) made a striking announcement. Transforming its current regulatory practice for approving and certifying medical devices-the FDA announced a bold new plan, the Digital Health Software Precertification (Precert) Program, to offer an entirely new regulatory model to assess smartphone apps, wearables, sensors, and software. This transformation and medicalization of the consumer health market present both opportunities and obstacles, by opening up large markets for health monitoring and diagnosis using inexpensive mass-market, off-the-shelf devices. It also raises challenges, both related to privacy and effective uses of the devices to promote health. The Fitbit and Apple Watch are examples.


Subject(s)
Fitness Trackers , Mobile Applications , Smartphone , Health Promotion/methods , Health Promotion/standards , Humans , United States , United States Food and Drug Administration
20.
Radiat Prot Dosimetry ; 183(4): 488-495, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30289490

ABSTRACT

The emerging 5 G wireless devices working at frequencies above 6 GHz are expected to have antenna arrays formed by dipoles, slots, patches or their combination. At lower frequencies, the accepted criteria for exposure compliance is stated in terms of specific absorption rate. IEEE and ICNIRP are adopting epithelial or transmitted power density (PD through body surface) as the dosimetric reference for frequencies above 6 GHz, which entails the measurement of free space PD. Theoretical and numerical results presented in this article show that it is possible to perform meaningful free space PD assessments at half wave (λ/2) distance from arrays and, with the proper instrumentation, as close as λ/(2π). However, if a dissipative body is placed very close (<λ/2π) to the arrays, its reflection and absorption of RF energy can change the electric currents and charges over the antenna. The relevance of such an effect should be further investigated, for instance by means of experimental analysis including measurements of tissue heating when in the presence of a strong reactive near field.


Subject(s)
Radiation Exposure/analysis , Skin/radiation effects , Telephone/instrumentation , Electromagnetic Fields/adverse effects , Humans , Models, Theoretical , Radio Waves/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...