Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Parasitology ; 149(9): 1173-1178, 2022 08.
Article in English | MEDLINE | ID: mdl-35570667

ABSTRACT

The cestode Schistocephalus solidus is a common parasite in freshwater threespine stickleback populations, imposing strong fitness costs on their hosts. Given this, it is surprising how little is known about the timing and development of infections in natural stickleback populations. Previous work showed that young-of-year stickleback can get infected shortly after hatching. We extended this observation by comparing infection prevalence of young-of-year stickleback from 3 Alaskan populations (Walby, Cornelius and Wolf lakes) over 2 successive cohorts (2018/19 and 2019/20). We observed strong variation between sampling years (2018 vs 2019 vs 2020), stickleback age groups (young-of-year vs 1-year-old) and sampling populations.


Subject(s)
Cestode Infections , Fish Diseases , Smegmamorpha , Alaska/epidemiology , Animals , Cestode Infections/epidemiology , Cestode Infections/veterinary , Fish Diseases/epidemiology , Fish Diseases/parasitology , Host-Parasite Interactions , Lakes/parasitology , Smegmamorpha/parasitology
2.
Sci Rep ; 10(1): 5239, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32251316

ABSTRACT

Predation often has consistent effects on prey behavior and morphology, but whether the physiological mechanisms underlying these effects show similarly consistent patterns across different populations remains an open question. In vertebrates, predation risk activates the hypothalamic-pituitary-adrenal (HPA) axis, and there is growing evidence that activation of the maternal HPA axis can have intergenerational consequences via, for example, maternally-derived steroids in eggs. Here, we investigated how predation risk affects a suite of maternally-derived steroids in threespine stickleback eggs across nine Alaskan lakes that vary in whether predatory trout are absent, native, or have been stocked within the last 25 years. Using liquid chromatography coupled with mass spectroscopy (LC-MS/MS), we detected 20 steroids within unfertilized eggs. Factor analysis suggests that steroids covary within and across steroid classes (i.e. glucocorticoids, progestogens, sex steroids), emphasizing the modularity and interconnectedness of the endocrine response. Surprisingly, egg steroid profiles were not significantly associated with predator regime, although they were more variable when predators were absent compared to when predators were present, with either native or stocked trout. Despite being the most abundant steroid, cortisol was not consistently associated with predation regime. Thus, while predators can affect steroids in adults, including mothers, the link between maternal stress and embryonic development is more complex than a simple one-to-one relationship between the population-level predation risk experienced by mothers and the steroids mothers transfer to their eggs.


Subject(s)
Ovum/metabolism , Predatory Behavior , Smegmamorpha/physiology , Steroids/metabolism , Alaska , Animals , Chromatography, Liquid , Female , Lakes , Ovum/physiology , Steroids/analysis , Tandem Mass Spectrometry
3.
Biol Lett ; 15(1): 20180647, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30958220

ABSTRACT

Adaptive radiations often exhibit high levels of phenotypic replication, a phenomenon that can be explained by selection on standing variation in repeatedly divergent environments or by the influence of ancestral plasticity on selection in divergent environments. Here, we offer the first evidence that plastic loss of expression of a complex display in a novel environment, followed by selection against expression, could lead to replicated evolutionary inhibition of the phenotype. In both ancestral (oceanic) and benthic (freshwater) populations of the threespine stickleback fish, cannibalism is common and males defending nests respond to approaching groups with a complex diversionary display. This display is not exhibited by males in allopatric, limnetic (freshwater) populations from which cannibalistic groups are absent. Laboratory-reared males from three limnetic populations exhibit a reduced tendency to respond to cannibalistic foraging groups relative to laboratory-reared ancestral and benthic males, but still are capable of producing a similar array of forms of the display despite many generations of disuse. Thus, replication in adaptive radiations can reflect reduced expression of an ancestral trait followed by evolutionary inhibition while the population retains the capacity to express the trait under extreme ancestral conditions.


Subject(s)
Biological Evolution , Smegmamorpha , Animals , Fresh Water , Male , Phenotype
4.
Gen Comp Endocrinol ; 268: 71-79, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30077793

ABSTRACT

Hormones play a prominent role in animal development, mediating the expression of traits and coordinating phenotypic responses to the environment. Their role as physiological integrators has implications for how populations respond to natural selection and can impact the speed and direction of evolutionary change. However, many emerging and established fish models with the potential to be ecologically or evolutionarily informative are small-bodied, making hormone sampling through traditional methods (whole-body or plasma) lethal or highly disruptive. Sampling methodology has thus restricted study design, often limiting sample sizes, and has prevented the study of at-risk/endangered populations. We utilize water-borne hormone sampling, a minimally invasive method of measuring the rate of steroid hormone release across the gills and further validate this method in a novel, evolutionary context. First, we compare water-borne hormone measures of cortisol with those quantified from plasma and whole-body samples collected from the same individuals to establish the relationship between concentrations quantified via the three methods. We then compare the release of steroid hormones in three populations of threespine stickleback to establish the sensitivity of this tool in measuring within-individual and between-individual variation in biologically relevant contexts (reproductive stages), and in assessing differences among populations with distinct evolutionary histories. We demonstrate a strong positive relationship between cortisol concentrations measured with water-borne, plasma, and whole-body collection techniques. Tracking estradiol and testosterone throughout clutch production in females produced anticipated patterns associated with growing and maturing eggs, with divergence in estradiol production in one population. Additionally, differences among populations in cortisol levels at ovulation paralleled the relative presence of a social stressor, and thus expected energetic needs within each population. We confirm that water-borne hormone sampling is sufficiently sensitive to capture biologically relevant fluctuations in steroid hormones between environmental contexts and demonstrate that among-population differences are detectable. This technique can be applied broadly to small fish to answer important ecological and evolutionary questions. By linking population variation in hormones and the multivariate phenotype, this technique will help elucidate both proximate mechanisms underlying phenotypic development and variation, and the way hormone networks alter evolutionary responses to selection.


Subject(s)
Reproduction/physiology , Steroids/metabolism , Testosterone/blood , Animals , Female , Fishes
5.
Anim Behav ; 106: 181-189, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26273106

ABSTRACT

Changing environments, whether through natural or anthropogenic causes, can lead to the loss of some selective pressures ('relaxed selection') and possibly even the reinstatement of selective agents not encountered for many generations ('reversed selection'). We examined the outcome of relaxed and reversed selection in the adaptive radiation of the threespine stickleback fish, Gasterostues aculeatus L., in which isolated populations encounter a variety of predation regimes. Oceanic stickleback, which represent the ancestral founders of the freshwater radiation, encounter many piscivorous fish. Derived, freshwater populations, on the other hand, vary with respect to the presence of predators. Some populations encounter native salmonids, whereas others have not experienced predation by large fish in thousands of generations (relax-selected populations). Some relax-selected populations have had sport fish, including rainbow trout, Oncorhynchus mykiss, introduced within the past several decades (reverse-selected). We examined the behavioural responses of stickleback from three populations of each type to simulated attacks by trout and birds to determine whether relaxed and reversed selection has led to divergence in behaviour, and whether this divergence was predator specific. Fish from trout-free populations showed weak responses to trout, as predicted, but these responses were similar to those of oceanic (ancestral) populations. Fish from populations that co-occur with trout, whether native or introduced, showed elevated antipredator responses, indicating that in freshwater, trout predation selects for enhanced antipredator responses, which can evolve extremely rapidly. Comparison of laboratory-reared and wild-caught individuals suggests a combination of learned and genetic components to this variation. Responses to a model bird flyover were weakly linked to predation environment, indicating that the loss of predation by trout may partially influence the evolution of responses to birds. Our results reject the hypothesis that the consistent presence of predatory birds has been sufficient to maintain responses to piscivorous fish under periods of relaxed selection.

6.
Integr Comp Biol ; 55(3): 406-17, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26163679

ABSTRACT

At the end of the 19th century, the suggestion was made by several scientists, including J. M. Baldwin, that behavioral responses to environmental change could both rescue populations from extinction (Baldwin Effect) and influence the course of subsequent evolution. Here we provide the historical and theoretical background for this argument and offer evidence of the importance of these ideas for understanding how animals (and other organisms that exhibit behavior) will respond to the rapid environmental changes caused by human activity. We offer examples from long-term research on the evolution of behavioral and other phenotypes in the adaptive radiation of the threespine stickleback fish (Gasterosteus aculeatus), a radiation in which it is possible to infer ancestral patterns of behavioral plasticity relative to the post-glacial freshwater radiation in northwestern North America, and to use patterns of parallelism and contemporary evolution to understand adaptive causes of responses to environmental modification. Our work offers insights into the complexity of cognitive responses to environmental change, and into the importance of examining multiple aspects of the phenotype simultaneously, if we are to understand how behavioral shifts contribute to the persistence of populations and to subsequent evolution. We conclude by discussing the origins of apparent novelties induced by environmental shifts, and the importance of accounting for geographic variation within species if we are to accurately anticipate the effects of anthropogenic environmental modification on the persistence and evolution of animals.


Subject(s)
Adaptation, Biological , Biological Evolution , Environment , Phenotype , Smegmamorpha/physiology , Animals , Behavior, Animal , Cognition , Genetic Variation , Smegmamorpha/genetics
7.
Trends Ecol Evol ; 24(9): 487-96, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19500875

ABSTRACT

Natural populations often experience the weakening or removal of a source of selection that had been important in the maintenance of one or more traits. Here we refer to these situations as 'relaxed selection,' and review recent studies that explore the effects of such changes on traits in their ecological contexts. In a few systems, such as the loss of armor in stickleback, the genetic, developmental and ecological bases of trait evolution are being discovered. These results yield insights into whether and how fast a trait is reduced or lost under relaxed selection. We provide a prospectus and a framework for understanding relaxed selection and trait loss in natural populations. We also examine its implications for applied issues, such as antibiotic resistance and the success of invasive species.


Subject(s)
Selection, Genetic , Adaptation, Biological , Animals , Biological Evolution , Fishes/anatomy & histology , Fishes/genetics , Orchidaceae/anatomy & histology , Orchidaceae/genetics , Phenotype , Population Dynamics , Sciuridae/genetics , Sciuridae/physiology
8.
Am Nat ; 172(4): 449-62, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18729721

ABSTRACT

If an ancestral stem group repeatedly colonizes similar environments, developmental plasticity specific to that group should consistently give rise to similar phenotypes. Parallel selection on those similar phenotypes could lead to the repeated evolution of characteristic ecotypes, a property common to many adaptive radiations. A key prediction of this "flexible stem" model of adaptive radiation is that patterns of phenotypic divergence in derived groups should mirror patterns of developmental plasticity in their common ancestor. The threespine stickleback radiation provides an excellent opportunity to test this prediction because the marine form is representative of the ancestral stem group, which has repeatedly given rise to several characteristic ecotypes. We examined plasticity of several aspects of shape and trophic morphology in response to diets characteristic of either the derived benthic ecotype or the limnetic ecotype. When marine fish were reared on alternative diets, plasticity of head and mouth shape paralleled phenotypic divergence between the derived ecotypes, supporting the flexible stem model. Benthic and limnetic fish exhibited patterns of plasticity similar to those of the marine population; however, some differences in population means were present, as well as subtle differences in shape plasticity in the benthic population, indicating a role for genetic accommodation in this system.


Subject(s)
Biological Evolution , Ecosystem , Models, Genetic , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Animals , Diet
9.
New Phytol ; 175(2): 370-380, 2007.
Article in English | MEDLINE | ID: mdl-17587385

ABSTRACT

Three small populations of a dwarf ecotype of the forest tree Eucalyptus globulus are found on exposed granite headlands in south-eastern Australia. These populations are separated by at least 100 km. Here, we used 12 nuclear microsatellites and a chloroplast DNA marker to investigate the genetic affinities of the dwarf populations to one another and to their nearest populations of tall E. globulus. Cape Tourville was studied in greater detail to assess the processes enabling the maintenance of distinct ecotypes in close geographical proximity. The three dwarf populations were not related to one another and were more closely related to adjacent tall trees than to one another. At Cape Tourville the dwarf and tall ecotypes were significantly differentiated in microsatellites and in chloroplast DNA. The dwarf and tall populations differed in flowering time and no evidence of pollen dispersal from the more extensive tall to the dwarf population was found. The three dwarf populations have evolved in parallel from the local tall ecotypes. This study shows that small marginal populations of eucalypts are capable of developing reproductive isolation from nearby larger populations through differences in flowering time and/or minor spatial separation, making parapatric speciation possible.


Subject(s)
Ecosystem , Eucalyptus/genetics , Genetic Speciation , Adaptation, Physiological/genetics , Australia , Gene Flow , Phenotype , Reproduction
10.
Trends Ecol Evol ; 19(9): 456-9, 2004 Sep.
Article in English | MEDLINE | ID: mdl-16701305

ABSTRACT

Neo-darwinists have long argued that parallel evolution, the repeated evolution of similar phenotypes in closely related lineages, is caused by the action of similar environments on alleles at many loci of small effect. A more controversial possibility is that the genetic architecture of traits initiates parallelism, sometimes through fixation of alleles of large effect. Recent research (by Cole et al., Colosimo et al., Cresko et al., and Shapiro et al.) offers the surprising insight that reduction in two armor traits of threespine stickleback is governed by independently segregating major loci as well as additional quantitative trait loci (QTL), and that alleles at the same major loci are associated with parallel phenotypes in globally distributed populations. This research suggests the emergence of a new and exciting vertebrate model system for evolutionary genetics.

11.
Oecologia ; 67(4): 499-505, 1985 Dec.
Article in English | MEDLINE | ID: mdl-28311034

ABSTRACT

Three adult size classes of the territorial Caribbean dusky damselfish,Stegastes dorsopunicans, are differently distributed with respect to habitat, and with respect to the biomass of filamentous algal turfs in the areas they defend. The density of large individuals is positively correlated with the decalcified dry biomass of these turfs, whereas the densities of medium and small individuals are inversely related to algal biomass. Density of the urchin,Diadema, is also inversely correlated with algal biomass. The high density of large dusky damselfish in sites with algal turfs of relatively high biomass probably results from preferences of dusky damselfish for sites in which algal turfs are thick, and superior abilities of large individuals to defend these sites.Because both rate of attacks and the effectiveness of attacks on territory invaders by dusky damselfish increases with increasing size, sites with relatively high biomass algal turfs are typically better defended than those with lower biomass turfs. Apparently as a result of this, small foraging groups of the blue tang surgeonfish,Acanthurus coeruleus, feed less on high biomass algal turfs than do larger foraging groups, the members of which experience attacks by defending damselfishes less frequently. The relatively low proportionate use of high biomass feeding sites by solitary blue tangs and members of small foraging groups is caused by dusky damselfish. When the density of this damselfish was reduced artificially, use of high biomass algal turfs by solitary blue tangs increased to a level indistinguishable from that of participants in large foraging groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...