ABSTRACT
Parabens and phthalates are commercial chemicals widely used in the manufacture of industrial and consumer products frequently found as contaminants in biological fluids. We evaluated the effects of di-(2-ethylhexyl) phthalate (DEHP) (ranging from 10(-9) to 10(-7) m [1-100 nm; 0.39-39 ng ml(-1) ]) and butylparaben (BP) (ranging from 10(-8) to 10(-5) m [10 nm-10 µm; 1.9 ng ml(-1) to 1.9 µg ml(-1) ]), alone and in combination, on isolated mouse preantral follicle and human granulosa cell (hGC) cultures to study direct effects on follicle growth and ovarian steroidogenesis. Our results revealed that, in follicle culture, DEHP and BP attenuate estradiol output but only when present together. DEHP decreases progesterone concentrations in the spent media of hGC cultures, an effect that was attenuated when BP was added together with DEHP. Although changes in steroidogenesis were observed, no effects on follicular development or survival were noted in the culture systems. We suggest that BP and DEHP act with additive effect to decrease estradiol production whereas at later stages of follicle development BP blocks the effect of DEHP in hGCs resulting in decreased progesterone output. Taken together our results suggest that DEHP and BP adversely affect steroidogenesis from the preantral stage onward and the effects of these chemicals are both stage-dependent and modified by co-exposure. Copyright © 2016 John Wiley & Sons, Ltd.
Subject(s)
Diethylhexyl Phthalate/toxicity , Ovarian Follicle/drug effects , Parabens/toxicity , Animals , Cells, Cultured , Endocrine Disruptors/toxicity , Estradiol/metabolism , Female , Granulosa Cells/drug effects , Humans , Mice , Mice, Inbred C57BL , Ovarian Follicle/metabolism , Progesterone/metabolismABSTRACT
Under the North American Commission for Environmental Cooperation (CEC) and its Sound Management of Chemicals (SMOC) program, a tri-national human contaminant monitoring initiative was completed to provide baseline exposure information for several environmental contaminants in Canada, Mexico and the United States (U.S). Blood samples were collected from primiparous women in Canada and Mexico, and were analysed for a suite of environmental contaminants including polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene(p,p'-DDE),beta-hexachlorocyclohexane (ß-HCH), mercury and lead. A multiple stepwise linear regression analysis was conducted using data from Canadian and Mexican primiparous mothers, adjusting for ethnicity group, age, pre-pregnancy BMI, years at current city and ever-smoking status. Concentrations of p,p'-DDE, ß-HCH, and lead were found to be higher among Mexican participants; however, concentrations of most PCBs among Mexican participants were similar to Canadian primiparous women after adjusting for covariates. Concentrations of total mercury were generally higher among Mexican primiparous women although this difference was smaller as age increased. This initial dataset can be used to determine priorities for future activities and to track progress in the management of the selected chemicals, both domestically and on a broader cooperative basis within North America.
Subject(s)
Environmental Pollutants/blood , Maternal Exposure/statistics & numerical data , Metals/blood , Adult , Canada , Dichlorodiphenyl Dichloroethylene/blood , Female , Humans , Mercury/blood , Mexico , Polychlorinated Biphenyls/blood , PregnancySubject(s)
Animals , Humans , Male , Rats , Sperm Count , Spermatogenesis/drug effects , Polychlorinated Dibenzodioxins/adverse effects , EpididymisABSTRACT
A single in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gestation day 15 decreased epididymal sperm count in adult rats and thus was used to establish a tolerable daily intake for TCDD. However, several laboratories have been unable to replicate these findings. Moreover, conflicting reports of TCDD effects on daily sperm production suggest that spermatogenesis may not be as sensitive to the adverse effects of TCDD as previously thought. We performed a PubMed search using relevant search terms linking dioxin exposure with adverse effects on reproduction and spermatogenesis. Developmental exposure to TCDD is consistently linked with decreased cauda epididymal sperm counts in animal studies, although at higher dose levels than those used in some earlier studies. However, the evidence linking in utero TCDD exposure and spermatogenesis is not convincing. Animal studies provide clear evidence of an adverse effect of in utero TCDD exposure on epididymal sperm count but do not support the conclusion that spermatogenesis is adversely affected. The mechanisms underlying decreased epididymal sperm count are unknown; however, we contest [corrected] that epididymal function is the key target for the adverse effects of TCDD.
Subject(s)
Polychlorinated Dibenzodioxins/adverse effects , Sperm Count , Spermatogenesis/drug effects , Animals , Epididymis , Humans , Male , RatsABSTRACT
A single in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gestation day 15 decreased epididymal sperm count in adult rats and thus was used to establish a tolerable daily intake for TCDD. However, several laboratories have been unable to replicate these findings. Moreover, conflicting reports of TCDD effects on daily sperm production suggest that spermatogenesis may not be as sensitive to the adverse effects of TCDD as previously thought. We performed a PubMed search using relevant search terms linking dioxin exposure with adverse effects on reproduction and spermatogenesis. Developmental exposure to TCDD is consistently linked with decreased cauda epididymal sperm counts in animal studies, although at higher dose levels than those used in some earlier studies. However, the evidence linking in utero TCDD exposure and spermatogenesis is not convincing. Animal studies provide clear evidence of an adverse effect of in utero TCDD exposure on epididymal sperm count but do not support the conclusion that spermatogenesis is adversely affected. The mechanisms underlying decreased epididymal sperm count are unknown; however, we postulate that epididymal function is the key target for the adverse effects of TCDD.
Uma única exposição in utero a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) no 15º dia de gestação diminuiu a contagem de esperma epididimal em ratos adultos e por isso foi utilizada para estabelecer uma dosagem diária tolerável para TCDD. No entanto, diversos laboratórios não conseguiram reproduzir esses resultados. Além disso, relatórios conflitantes dos efeitos de TCDD na produção diária de esperma sugere que espermatogênese pode não ser tão sensível aos efeitos adversos do TCDD como antes se pensava. Foi feita uma pesquisa no PubMed usando termos de pesquisa relevantes, relacionados à exposição à dioxina com efeitos adversos na reprodução e na espermatogênese. Exposição em desenvolvimento ao TCDD é consistentemente relacionada à diminuição da contagem da cauda epididimal de esperma, mas não apoia a conclusão de que a espermatogênese é afetada. Os mecanismos por trás da diminuição da contagem de esperma epididimal são desconhecidos; no entanto, contestamos que a função epididimal é a chave para efeitos adversos do TCDD.