Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biotechnol ; 19(1): 101, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31864319

ABSTRACT

BACKGROUND: Clostridium perfringens, a gram-positive, anaerobic, rod-shaped bacterium, is the third leading cause of human foodborne bacterial disease and a cause of necrotic enteritis in poultry. It is controlled using antibiotics, widespread use of which may lead to development of drug-resistant bacteria. Bacteriophage-encoded endolysins that degrade peptidoglycans in the bacterial cell wall are potential replacements for antibiotics. Phage endolysins have been identified that exhibit antibacterial activities against several Clostridium strains. RESULTS: An Escherichia coli codon-optimized gene encoding the glycosyl hydrolase endolysin (PlyCP41) containing a polyhistidine tag was expressed in E. coli. In addition, The E. coli optimized endolysin gene was engineered for expression in plants (PlyCP41p) and a plant codon-optimized gene (PlyCP41pc), both containing a polyhistidine tag, were expressed in Nicotiana benthamiana plants using a potato virus X (PVX)-based transient expression vector. PlyCP41p accumulated to ~ 1% total soluble protein (100µg/gm f. wt. leaf tissue) without any obvious toxic effects on plant cells, and both the purified protein and plant sap containing the protein lysed C. perfringens strain Cp39 in a plate lysis assay. Optimal systemic expression of PlyCP41p was achieved at 2 weeks-post-infection. PlyCP41pc did not accumulate to higher levels than PlyCP41p in infected tissue. CONCLUSION: We demonstrated that functionally active bacteriophage PlyCP41 endolysin can be produced in systemically infected plant tissue with potential for use of crude plant sap as an effective antimicrobial agent against C. perfringens.


Subject(s)
Bacteriophages/enzymology , Clostridium perfringens/drug effects , Endopeptidases/genetics , Nicotiana/genetics , Viral Proteins/genetics , Bacteriophages/genetics , Clostridium perfringens/physiology , Endopeptidases/chemistry , Endopeptidases/metabolism , Endopeptidases/pharmacology , Gene Expression , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Protein Engineering , Nicotiana/chemistry , Nicotiana/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/pharmacology
2.
AIMS Microbiol ; 5(2): 158-175, 2019.
Article in English | MEDLINE | ID: mdl-31384710

ABSTRACT

The increasing spread of antibiotic-resistant microorganisms has led to the necessity of developing alternative antimicrobial treatments. The use of peptidoglycan hydrolases is a promising approach to combat bacterial infections. In our study, we constructed a 2 kb-triple-acting fusion gene (TF) encoding the N-terminal amidase-5 domain of streptococcal LambdaSA2 prophage endolysin (D-glutamine-L-lysin endopeptidase), a mid-protein amidase-2 domain derived from the staphylococcal phage 2638A endolysin (N-acetylmuramoyl-L-alanine amidase) and the mature version (246 residues) of the Staphylococcus simulans Lysostaphin bacteriocin (glycyl-glycine endopeptidase) at the C-terminus. The TF gene was expressed in Nicotiana benthamiana plants using the non-replicating Cowpea mosaic virus (CPMV)-based vector pEAQ-HT and the replicating Alternanthera mosaic virus (AltMV)-based pGD5TGB1L8823-MCS-CP3 vector, and in Escherichia coli using pET expression vectors pET26b+ and pET28a+. The resulting poor expression of this fusion protein in plants prompted the construction of a TF gene codon-optimized for expression in tobacco plants, resulting in an improved codon adaptation index (CAI) from 0.79 (TF gene) to 0.93 (TFnt gene). Incorporation of the TFnt gene into the pEAQ-HT vector, followed by transient expression in N. benthamiana, led to accumulation of TFnt to an approximate level of 0.12 mg/g of fresh leaf weight. Antimicrobial activity of purified plant- and bacterial-produced TFnt proteins was assessed against two strains of Gram-positive Staphylococcus aureus 305 and Newman. The results showed that plant-produced TFnt protein was preferentially active against S. aureus 305, showing 14% of growth inhibition, while the bacterial-produced TFnt revealed significant antimicrobial activity against both strains, showing 68 (IC50 25 µg/ml) and 60% (IC50 71 µg/ml) growth inhibition against S. aureus 305 and Newman, respectively. Although the combination of codon optimization and transient expression using the non-replicating pEAQ-HT expression vector facilitated production of the TFnt protein in plants, the most functionally active antimicrobial protein was obtained using the prokaryotic expression system.

3.
Appl Biochem Biotechnol ; 180(3): 544-557, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27168405

ABSTRACT

A staphylolytic fusion protein (chimeric enzyme K-L) was created, harboring three unique lytic activities composed of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of chimeric enzyme K-L was investigated. As a protein antimicrobial, with potential antigenic properties, the biophysical effect of including chimeric enzyme K-L in anionic polymer matrices that might help reduce the immunogenicity of the enzyme was tested. Chimeric enzyme K-L reveals a high lytic activity under the following optimal (opt) conditions: pHopt 6.0-10.0, topt 20-30 °C, NaClopt 400-800 mM. At the working temperature of 37 °C, chimeric enzyme K-L is inactivated by a monomolecular mechanism and possesses a high half-inactivation time of 12.7 ± 3.0 h. At storage temperatures of 22 and 4 °C, a complex mechanism (combination of monomolecular and bimolecular mechanisms) is involved in the chimeric enzyme K-L inactivation. The optimal storage conditions under which the enzyme retains 100 % activity after 140 days of incubation (4 °C, the enzyme concentration of 0.8 mg/mL, pH 6.0 or 7.5) were established. Chimeric enzyme K-L is included in complexes with block-copolymers of poly-L-glutamic acid and polyethylene glycol, while the enzyme activity and stability are retained, thus suggesting methods to improve the application of this fusion as an effective antimicrobial agent.


Subject(s)
Anions/pharmacology , Bacterial Proteins/pharmacology , Bacteriolysis/drug effects , Lysostaphin/pharmacology , Polymers/pharmacology , Recombinant Fusion Proteins/pharmacology , Staphylococcus aureus/cytology , Enzyme Activation/drug effects , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Kinetics , Particle Size , Sodium Chloride/pharmacology , Staphylococcus aureus/drug effects , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...