Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31466393

ABSTRACT

The purpose of this study was to examine the effects of speed training on sprint step kinematics and performance in male sprinters. Two groups of seven elite (best 100-m time: 10.37 ± 0.04 s) and seven sub-elite (best 100-m time: 10.71 ± 0.15 s) sprinters were recruited. Sprint performance was assessed in the 20 m (flying start), 40 m (standing start), and 60 m (starting block start). Step kinematics were extracted from the first nine running steps of the 20-m sprint using the Opto-Jump-Microgate system. Explosive power was quantified by performing the CMJ, standing long jump, standing triple jump, and standing five jumps. Significant post-test improvements (p < 0.05) were observed in both groups of sprinters. Performance improved by 0.11 s (elite) and 0.06 s (sub-elite) in the 20-m flying start and by 0.06 s (elite) and 0.08 s (sub-elite) in the 60-m start block start. Strong post-test correlations were observed between 60-m block start performance and standing five jumps (SFJ) in the elite group and between 20-m flying start and 40-m standing start performance and standing long jump (SLJ) and standing triple jump (STJ) in the sub-elite group. Speed training (ST) shows potential in the reduction of step variability and as an effective short-term intervention program in the improvement of sprint performance.


Subject(s)
Physical Conditioning, Human , Running/physiology , Adolescent , Adult , Athletic Performance , Biomechanical Phenomena , Humans , Male , Young Adult
2.
J Hum Kinet ; 45: 135-48, 2015 Mar 29.
Article in English | MEDLINE | ID: mdl-25964817

ABSTRACT

The goal of this study was to examine the relationship between kinematics, motor abilities, anthropometric characteristics, and the initial (10 m) and secondary (30 m) acceleration phases of the 100 m sprint among athletes of different sprinting performances. Eleven competitive male sprinters (10.96 s ± 0.36 for 100 with 10.50 s fastest time) and 11 active students (12.20 s ± 0.39 for 100 m with 11.80 s fastest time) volunteered to participate in this study. Sprinting performance (10 m, 30 m, and 100 m from the block start), strength (back squat, back extension), and jumping ability (standing long jump, standing five-jumps, and standing ten-jumps) were tested. An independent t-test for establishing differences between two groups of athletes was used. The Spearman ranking correlation coefficient was computed to verify the association between variables. Additionally, the Ward method of hierarchical cluster analysis was applied. The recorded times of the 10 and 30 m indicated that the strongest correlations were found between a 1-repetition maximum back squat, a standing long jump, standing five jumps, standing ten jumps (r = 0.66, r = 0.72, r = 0.66, and r = 0.72), and speed in the 10 m sprint in competitive athletes. A strong correlation was also found between a 1-repetition maximum back squat and a standing long jump, standing five jumps, and standing ten jumps (r = 0.88, r = 0.87 and r = 0.85), but again only for sprinters. The most important factor for differences in maximum speed development during both the initial and secondary acceleration phase among the two sub-groups was the stride frequency (p<0.01).

3.
J Strength Cond Res ; 29(7): 1956-65, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25627644

ABSTRACT

The purpose of this study was to examine the effect of a short high-intensity plyometric program on the improvement of explosive power of lower extremities and sprint performance as well as changes in sprinting stride variability in male sprinters. Fourteen healthy male sprinters (mean ± SD: age: 18.07 ± 0.73 years, body mass: 73 ± 9.14 kg, height: 180.57 ± 8.16 cm, and best 100 m: 10.89 ± 0.23) participated in the experiment. The experimental protocol included vertical jumping such as squat jump, countermovement jump, and horizontal jumps; standing long jump and standing triple jumps to assess lower-body power, maximal running velocity; a 20-m flying start sprint that evaluated variability of 10 running steps and 60-m starting block sprint. All analyzed parameters were obtained using the new technology of OptoJump-Microgate (OptoJump, Italy). The short-term plyometric training program significantly increased the explosive power of lower extremities, both vertical and horizontal jumping improvement. However, the vertical jumps increased much more than the horizontal. The 20-m improvements were derived from an increase of stride frequency from 4.31 to 4.39 Hz because of a decrease of ground contact time from 138 to 133 milliseconds. This did not translate into step length changes. Therefore, the significantly increased frequency of stride (1.8%), which is a specific expression of ground contact time reduction during support phase, resulted in an increase of speed. The training volume of 2 weeks (with 6 sessions) using high-intensity (between 180 and 250 jumps per session) plyometric exercises can be recommended as the short-term strategy that will optimize one's probability of reaching strong improvements in explosive power and sprint velocity performance.


Subject(s)
Athletic Performance/physiology , Gait/physiology , Plyometric Exercise/methods , Running/physiology , Adolescent , Humans , Lower Extremity/physiology , Male , Muscle Strength/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...