Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Cardiovasc Magn Reson ; 26(1): 101039, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38521391

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment and management of adult patients with congenital heart disease (CHD). However, conventional techniques for three-dimensional (3D) whole-heart acquisition involve long and unpredictable scan times and methods that accelerate scans via k-space undersampling often rely on long iterative reconstructions. Deep-learning-based reconstruction methods have recently attracted much interest due to their capacity to provide fast reconstructions while often outperforming existing state-of-the-art methods. In this study, we sought to adapt and validate a non-rigid motion-corrected model-based deep learning (MoCo-MoDL) reconstruction framework for 3D whole-heart MRI in a CHD patient cohort. METHODS: The previously proposed deep-learning reconstruction framework MoCo-MoDL, which incorporates a non-rigid motion-estimation network and a denoising regularization network within an unrolled iterative reconstruction, was trained in an end-to-end manner using 39 CHD patient datasets. Once trained, the framework was evaluated in eight CHD patient datasets acquired with seven-fold prospective undersampling. Reconstruction quality was compared with the state-of-the-art non-rigid motion-corrected patch-based low-rank reconstruction method (NR-PROST) and against reference images (acquired with three-or-four-fold undersampling and reconstructed with NR-PROST). RESULTS: Seven-fold undersampled scan times were 2.1 ± 0.3 minutes and reconstruction times were ∼30 seconds, approximately 240 times faster than an NR-PROST reconstruction. Image quality comparable to the reference images was achieved using the proposed MoCo-MoDL framework, with no statistically significant differences found in any of the assessed quantitative or qualitative image quality measures. Additionally, expert image quality scores indicated the MoCo-MoDL reconstructions were consistently of a higher quality than the NR-PROST reconstructions of the same data, with the differences in 12 of the 22 scores measured for individual vascular structures found to be statistically significant. CONCLUSION: The MoCo-MoDL framework was applied to an adult CHD patient cohort, achieving good quality 3D whole-heart images from ∼2-minute scans with reconstruction times of ∼30 seconds.

2.
Magn Reson Med ; 90(4): 1363-1379, 2023 10.
Article in English | MEDLINE | ID: mdl-37246420

ABSTRACT

PURPOSE: The aim of this study is to develop and optimize an adiabatic T 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ ( T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ ) mapping method for robust quantification of spin-lock (SL) relaxation in the myocardium at 3T. METHODS: Adiabatic SL (aSL) preparations were optimized for resilience against B 0 $$ {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities using Bloch simulations. Optimized B 0 $$ {\mathrm{B}}_0 $$ -aSL, Bal-aSL and B 1 $$ {\mathrm{B}}_1 $$ -aSL modules, each compensating for different inhomogeneities, were first validated in phantom and human calf. Myocardial T 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ mapping was performed using a single breath-hold cardiac-triggered bSSFP-based sequence. Then, optimized T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparations were compared to each other and to conventional SL-prepared T 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ maps (RefSL) in phantoms to assess repeatability, and in 13 healthy subjects to investigate image quality, precision, reproducibility and intersubject variability. Finally, aSL and RefSL sequences were tested on six patients with known or suspected cardiovascular disease and compared with LGE, T 1 $$ {\mathrm{T}}_1 $$ , and ECV mapping. RESULTS: The highest T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparation efficiency was obtained in simulations for modules comprising 2 HS pulses of 30 ms each. In vivo T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps yielded significantly higher quality than RefSL maps. Average myocardial T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ values were 183.28 ± $$ \pm $$ 25.53 ms, compared with 38.21 ± $$ \pm $$ 14.37 ms RefSL-prepared T 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ . T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps showed a significant improvement in precision (avg. 14.47 ± $$ \pm $$ 3.71% aSL, 37.61 ± $$ \pm $$ 19.42% RefSL, p < 0.01) and reproducibility (avg. 4.64 ± $$ \pm $$ 2.18% aSL, 47.39 ± $$ \pm $$ 12.06% RefSL, p < 0.0001), with decreased inter-subject variability (avg. 8.76 ± $$ \pm $$ 3.65% aSL, 51.90 ± $$ \pm $$ 15.27% RefSL, p < 0.0001). Among aSL preparations, B 0 $$ {\mathrm{B}}_0 $$ -aSL achieved the better inter-subject variability. In patients, B 1 $$ {\mathrm{B}}_1 $$ -aSL preparations showed the best artifact resilience among the adiabatic preparations. T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ times show focal alteration colocalized with areas of hyper-enhancement in the LGE images. CONCLUSION: Adiabatic preparations enable robust in vivo quantification of myocardial SL relaxation times at 3T.


Subject(s)
Heart , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results , Heart/diagnostic imaging , Myocardium , Breath Holding , Phantoms, Imaging
3.
Radiol Cardiothorac Imaging ; 5(1): e220146, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36860831

ABSTRACT

Purpose: To assess the clinical performance of the three-dimensional, free-breathing, Magnetization Transfer Contrast Bright-and-black blOOd phase-SensiTive (MTC-BOOST) sequence in adult congenital heart disease (ACHD). Materials and Methods: In this prospective study, participants with ACHD undergoing cardiac MRI between July 2020 and March 2021 were scanned with the clinical T2-prepared balanced steady-state free precession sequence and proposed MTC-BOOST sequence. Four cardiologists scored their diagnostic confidence on a four-point Likert scale for sequential segmental analysis on images acquired with each sequence. Scan times and diagnostic confidence were compared using the Mann-Whitney test. Coaxial vascular dimensions at three anatomic landmarks were measured, and agreement between the research sequence and the corresponding clinical sequence was assessed with Bland-Altman analysis. Results: The study included 120 participants (mean age, 33 years ± 13 [SD]; 65 men). The mean acquisition time of the MTC-BOOST sequence was significantly lower compared with that of the conventional clinical sequence (9 minutes ± 2 vs 14 minutes ± 5; P < .001). Diagnostic confidence was higher for the MTC-BOOST sequence compared with the clinical sequence (mean, 3.9 ± 0.3 vs 3.4 ± 0.7; P < .001). Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and clinical vascular measurements. Conclusion: The MTC-BOOST sequence provided efficient, high-quality, and contrast agent-free three-dimensional whole-heart imaging in ACHD, with shorter, more predictable acquisition time and improved diagnostic confidence compared with the reference standard clinical sequence.Keywords: MR Angiography, Cardiac Supplemental material is available for this article. Published under a CC BY 4.0 license.

4.
Magn Reson Med ; 89(6): 2242-2254, 2023 06.
Article in English | MEDLINE | ID: mdl-36763898

ABSTRACT

PURPOSE: To develop a motion-robust reconstruction technique for free-breathing cine imaging with multiple averages. METHOD: Retrospective motion correction through multiple average k-space data elimination (REMAKE) was developed using iterative removal of k-space segments (from individual k-space samples) that contribute most to motion corruption while combining any remaining segments across multiple signal averages. A variant of REMAKE, termed REMAKE+, was developed to address any losses in SNR due to k-space information removal. With REMAKE+, multiple reconstructions using different initial conditions were performed, co-registered, and averaged. Both techniques were validated against clinical "standard" signal averaging reconstruction in a static phantom (with simulated motion) and 15 patients undergoing free-breathing cine imaging with multiple averages. Quantitative analysis of myocardial sharpness, blood/myocardial SNR, myocardial-blood contrast-to-noise ratio (CNR), as well as subjective assessment of image quality and rate of diagnostic quality images were performed. RESULTS: In phantom, motion artifacts using "standard" (RMS error [RMSE]: 2.2 ± 0.5) were substantially reduced using REMAKE/REMAKE+ (RMSE: 1.5 ± 0.4/1.0 ± 0.4, p < 0.01). In patients, REMAKE/REMAKE+ led to higher myocardial sharpness (0.79 ± 0.09/0.79 ± 0.1 vs. 0.74 ± 0.12 for "standard", p = 0.004/0.04), higher image quality (1.8 ± 0.2/1.9 ± 0.2 vs. 1.6 ± 0.4 for "standard", p = 0.02/0.008), and a higher rate of diagnostic quality images (99%/100% vs. 94% for "standard"). Blood/myocardial SNR for "standard" (94 ± 30/33 ± 10) was higher vs. REMAKE (80 ± 25/28 ± 8, p = 0.002/0.005) and tended to be lower vs. REMAKE+ (105 ± 33/36 ± 12, p = 0.02/0.06). Myocardial-blood CNR for "standard" (61 ± 22) was higher vs. REMAKE (53 ± 19, p = 0.003) and lower vs. REMAKE+ (69 ± 24, p = 0.007). CONCLUSIONS: Compared to "standard" signal averaging reconstruction, REMAKE and REMAKE+ provide improved myocardial sharpness, image quality, and rate of diagnostic quality images.


Subject(s)
Heart , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Retrospective Studies , Heart/diagnostic imaging , Respiration , Motion , Artifacts
5.
J Magn Reson Imaging ; 58(4): 1110-1122, 2023 10.
Article in English | MEDLINE | ID: mdl-36757267

ABSTRACT

BACKGROUND: Bright-blood lumen and black-blood vessel wall imaging are required for the comprehensive assessment of aortic disease. These images are usually acquired separately, resulting in long examinations and potential misregistration between images. PURPOSE: To characterize the performance of an accelerated and respiratory motion-compensated three-dimensional (3D) cardiac MRI technique for simultaneous contrast-free aortic lumen and vessel wall imaging with an interleaved T2 and inversion recovery prepared sequence (iT2Prep-BOOST). STUDY TYPE: Prospective. POPULATION: A total of 30 consecutive patients with aortopathy referred for a clinically indicated cardiac MRI examination (9 females, mean age ± standard deviation: 32 ± 12 years). FIELD STRENGTH/SEQUENCE: 1.5-T; bright-blood MR angiography (diaphragmatic navigator-gated T2-prepared 3D balanced steady-state free precession [bSSFP], T2Prep-bSSFP), breath-held black-blood two-dimensional (2D) half acquisition single-shot turbo spin echo (HASTE), and 3D bSSFP iT2Prep-BOOST. ASSESSMENT: iT2Prep-BOOST bright-blood images were compared to T2prep-bSSFP images in terms of aortic vessel dimensions, lumen-to-myocardium contrast ratio (CR), and image quality (diagnostic confidence, vessel sharpness and presence of artifacts, assessed by three cardiologists on a 4-point scale, 1: nondiagnostic to 4: excellent). The iT2Prep-BOOST black-blood images were compared to 2D HASTE images for quantification of wall thickness. A visual comparison between computed tomography (CT) and iT2Prep-BOOST was performed in a patient with chronic aortic dissection. STATISTICAL TESTS: Paired t-tests, Wilcoxon signed-rank tests, intraclass correlation coefficient (ICC), Bland-Altman analysis. A P value < 0.05 was considered statistically significant. RESULTS: Bright-blood iT2Prep-BOOST resulted in significantly improved image quality (mean ± standard deviation 3.8 ± 0.5 vs. 3.3 ± 0.8) and CR (2.9 ± 0.8 vs. 1.8 ± 0.5) compared with T2Prep-bSSFP, with a shorter scan time (7.8 ± 1.7 minutes vs. 12.9 ± 3.4 minutes) while providing a complementary 3D black-blood image. Aortic lumen diameter and vessel wall thickness measurements in bright-blood and black-blood images were in good agreement with T2Prep-bSSFP and HASTE images (<0.02 cm and <0.005 cm bias, respectively) and good intrareader (ICC > 0.96) and interreader (ICC > 0.94) agreement was observed for all measurements. DATA CONCLUSION: iT2Prep-BOOST might enable time-efficient simultaneous bright- and black-blood aortic imaging, with improved image quality compared to T2Prep-bSSFP and HASTE imaging, and comparable measurements for aortic wall and lumen dimensions. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Aortic Diseases , Magnetic Resonance Angiography , Female , Humans , Magnetic Resonance Angiography/methods , Prospective Studies , Magnetic Resonance Imaging/methods , Aortic Diseases/diagnostic imaging , Myocardium , Imaging, Three-Dimensional/methods , Reproducibility of Results
6.
Circ Cardiovasc Imaging ; 16(1): e014068, 2023 01.
Article in English | MEDLINE | ID: mdl-36649450

ABSTRACT

Myocardial inflammation occurs following activation of the cardiac immune system, producing characteristic changes in the myocardial tissue. Cardiovascular magnetic resonance is the non-invasive imaging gold standard for myocardial tissue characterization, and is able to detect image signal changes that may occur resulting from inflammation, including edema, hyperemia, capillary leak, necrosis, and fibrosis. Conventional cardiovascular magnetic resonance for the detection of myocardial inflammation and its sequela include T2-weighted imaging, parametric T1- and T2-mapping, and gadolinium-based contrast-enhanced imaging. Emerging techniques seek to image several parameters simultaneously for myocardial tissue characterization, and to depict subtle immune-mediated changes, such as immune cell activity in the myocardium and cardiac cell metabolism. This review article outlines the underlying principles of current and emerging cardiovascular magnetic resonance methods for imaging myocardial inflammation.


Subject(s)
Contrast Media , Myocarditis , Humans , Magnetic Resonance Imaging/methods , Myocardium/pathology , Myocarditis/diagnostic imaging , Myocarditis/pathology , Inflammation , Magnetic Resonance Imaging, Cine , Predictive Value of Tests
7.
J Magn Reson Imaging ; 57(2): 521-531, 2023 02.
Article in English | MEDLINE | ID: mdl-35642573

ABSTRACT

BACKGROUND: Cardiac MRI plays an important role in the diagnosis and follow-up of patients with congenital heart disease (CHD). Gadolinium-based contrast agents are often needed to overcome flow-related and off-resonance artifacts that can impair the quality of conventional noncontrast 3D imaging. As serial imaging is often required in CHD, the development of robust noncontrast 3D MRI techniques is desirable. PURPOSE: To assess the clinical utility of noncontrast enhanced magnetization transfer and inversion recovery prepared 3D free-breathing sequence (MTC-BOOST) compared to conventional 3D whole heart imaging in patients with CHD. STUDY TYPE: Prospective, image quality. POPULATION: A total of 27 adult patients (44% female, mean age 30.9 ± 14.8 years) with CHD. FIELD STRENGTH/SEQUENCE: A 1.5 T; free-breathing 3D MTC-BOOST sequence. ASSESSMENT: MTC-BOOST was compared to diaphragmatic navigator-gated, noncontrast T2 prepared 3D whole-heart imaging sequence (T2prep-3DWH) for comparison of vessel dimensions, lumen-to-myocardium contrast ratio (CR), and image quality (vessel wall sharpness and presence and type of artifacts) assessed by two experienced cardiologists on a 5-point scale. STATISTICAL TESTS: Mann-Whitney test, paired Wilcoxon signed-rank test, Bland-Altman plots. P < 0.05 was considered statistically significant. RESULTS: MTC-BOOST significantly improved image quality and CR of the right-sided pulmonary veins (PV): (CR: right upper PV 1.06 ± 0.50 vs. 0.58 ± 0.74; right lower PV 1.32 ± 0.38 vs. 0.81 ± 0.73) compared to conventional T2prep-3DWH imaging where the PVs were not visualized in some cases due to off-resonance effects. MTC-BOOST demonstrated resistance to degradation of luminal signal (assessed by CR) secondary to accelerated or turbulent flow conditions. T2prep-3DWH had higher image quality scores than MTC-BOOST for the aorta and coronary arteries; however, great vessel dimensions derived from MTC-BOOST showed excellent agreement with standard T2prep-3DWH imaging. DATA CONCLUSION: MTC-BOOST allows for improved contrast-free imaging of pulmonary veins and regions characterized by accelerated or turbulent blood flow compared to standard T2prep-3DWH imaging, with excellent agreement of great vessel dimensions. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Heart Defects, Congenital , Pulmonary Veins , Humans , Adult , Female , Adolescent , Young Adult , Middle Aged , Male , Pulmonary Veins/diagnostic imaging , Prospective Studies , Magnetic Resonance Angiography/methods , Heart Defects, Congenital/diagnostic imaging , Magnetic Resonance Imaging , Contrast Media , Imaging, Three-Dimensional/methods , Reproducibility of Results
8.
J Magn Reson Imaging ; 57(2): 387-402, 2023 02.
Article in English | MEDLINE | ID: mdl-36205716

ABSTRACT

Magnetic resonance imaging (MRI) is a versatile modality that can generate high-resolution images with a variety of tissue contrasts. However, MRI is a slow technique and requires long acquisition times, which increase with higher temporal and spatial resolution and/or when multiple contrasts and large volumetric coverage is required. In order to speedup MR data acquisition, several approaches have been introduced in the literature. Most of these techniques acquire less data than required and exploit intrinsic redundancies in the MR images to recover the information that was not sampled. This article presents a review of MR acquisition and reconstruction methods that have exploited redundancies in the temporal, spatial, and contrast/parametric dimensions to accelerate image data acquisition, focusing on cardiac and abdominal MR imaging applications. The review describes how each of these dimensions has been separately exploited for speeding up MR acquisition to then discuss more advanced techniques where multiple dimensions are exploited together for further reducing scan times. Finally, future directions for multidimensional image acceleration and remaining technical challenges are discussed. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: 1.


Subject(s)
Heart , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Acceleration , Image Processing, Computer-Assisted/methods
9.
J Cardiovasc Magn Reson ; 26(1): 100008, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38194762

ABSTRACT

BACKGROUND: Three dimensional, whole-heart (3DWH) MRI is an established non-invasive imaging modality in patients with congenital heart disease (CHD) for the diagnosis of cardiovascular morphology and for clinical decision making. Current techniques utilise diaphragmatic navigation (dNAV) for respiratory motion correction and gating and are frequently limited by long acquisition times. This study proposes and evaluates the diagnostic performance of a respiratory gating-free framework, which considers respiratory image-based navigation (iNAV), and highly accelerated variable density Cartesian sampling in concert with non-rigid motion correction and low-rank patch-based denoising (iNAV-3DWH-PROST). The method is compared to the clinical dNAV-3DWH sequence in adult patients with CHD. METHODS: In this prospective single center study, adult patients with CHD who underwent the clinical dNAV-3DWH MRI were also scanned with the iNAV-3DWH-PROST. Diagnostic confidence (4-point Likert scale) and diagnostic accuracy for common cardiovascular lesions was assessed by three readers. Scan times and diagnostic confidence were compared using the Wilcoxon-signed rank test. Co-axial vascular dimensions at three anatomic landmarks were measured, and agreement between the research and the corresponding clinical sequence was assessed with Bland-Altman analysis. RESULTS: The study included 60 participants (mean age ± [SD]: 33 ± 14 years; 36 men). The mean acquisition time of iNAV-3DWH-PROST was significantly lower compared with the conventional clinical sequence (3.1 ± 0.9 min vs 13.9 ± 3.9 min, p < 0.0001). Diagnostic confidence was higher for the iNAV-3DWH-PROST sequence compared with the clinical sequence (3.9 ± 0.2 vs 3.4 ± 0.8, p < 0.001), however there was no significant difference in diagnostic accuracy. Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and the clinical vascular measurements. CONCLUSIONS: The iNAV-3DWH-PROST framework provides efficient, high quality and robust 3D whole-heart imaging in significantly shorter scan time compared to the standard clinical sequence.

10.
Magn Reson Imaging ; 92: 120-132, 2022 10.
Article in English | MEDLINE | ID: mdl-35772584

ABSTRACT

PURPOSE: Free-breathing Magnetization Transfer Contrast Bright blOOd phase SensiTive (MTC-BOOST) is a prototype balanced-Steady-State Free Precession sequence for 3D whole-heart imaging, that employs the endogenous magnetisation transfer contrast mechanism. This achieves reduction of flow and off-resonance artefacts, that often arise with the clinical T2prepared balanced-Steady-State Free Precession sequence, enabling high quality, contrast-agent free imaging of the thoracic cardiovascular anatomy. Fully-sampled MTC-BOOST acquisition requires long scan times (~10-24 min) and therefore acceleration is needed to permit its clinical incorporation. The aim of this study is to enable and clinically validate the 5-fold accelerated MTC-BOOST acquisition with joint Multi-Scale Variational Neural Network (jMS-VNN) reconstruction. METHODS: Thirty-six patients underwent free-breathing, 3D whole-heart imaging with the MTC-BOOST sequence, which is combined with variable density spiral-like Cartesian sampling and 2D image navigators for translational motion estimation. This sequence acquires two differently weighted bright-blood volumes in an interleaved fashion, which are then joined in a phase sensitive inversion recovery reconstruction to obtain a complementary fully co-registered black-blood volume. Data from eighteen patients were used for training, whereas data from the remaining eighteen patients were used for testing/evaluation. The proposed deep-learning based approach adopts a supervised multi-scale variational neural network for joint reconstruction of the two differently weighted bright-blood volumes acquired with the 5-fold accelerated MTC-BOOST. The two contrast images are stacked as different channels in the network to exploit the shared information. The proposed approach is compared to the fully-sampled MTC-BOOST and 5-fold undersampled MTC-BOOST acquisition with Compressed Sensing (CS) reconstruction in terms of scan/reconstruction time and bright-blood image quality. Comparison against conventional 2-fold undersampled T2-prepared 3D bright-blood whole-heart clinical sequence (T2prep-3DWH) is also included. RESULTS: Acquisition time was 3.0 ±â€¯1.0 min for the 5-fold accelerated MTC-BOOST versus 9.0 ±â€¯1.1 min for the fully-sampled MTC-BOOST and 11.1 ±â€¯2.6 min for the T2prep-3DWH (p < 0.001 and p < 0.001, respectively). Reconstruction time was significantly lower with the jMS-VNN method compared to CS (10 ±â€¯0.5 min vs 20 ±â€¯2 s, p < 0.001). Image quality was higher for the proposed 5-fold undersampled jMS-VNN versus conventional CS, comparable or higher to the corresponding T2prep-3DWH dataset and similar to the fully-sampled MTC-BOOST. CONCLUSION: The proposed 5-fold accelerated jMS-VNN MTC-BOOST framework provides efficient 3D whole-heart bright-blood imaging in fast acquisition and reconstruction time with concomitant reduction of flow and off-resonance artefacts, that are frequently encountered with the clinical sequence. Image quality of the cardiac anatomy and thoracic vasculature is comparable or superior to the clinical scan and 5-fold CS reconstruction in faster reconstruction time, promising potential clinical adoption.


Subject(s)
Heart Defects, Congenital , Imaging, Three-Dimensional , Heart/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Respiration
11.
Placenta ; 122: 46-55, 2022 05.
Article in English | MEDLINE | ID: mdl-35430505

ABSTRACT

INTRODUCTION: The CARP study aims to investigate placental function, cardiac function and fetal growth comprehensively during pregnancy, a time of maximal cardiac stress, to work towards disentangling the complex cardiac and placental interactions presenting in the aetiology of pre-eclampsia as well as predicting maternal Cardiovascular Disease (CVD) risk in later life. BACKGROUND: The involvement of the cardiovascular system in pre-eclampsia, one of the most serious complications of pregnancy, is evident. While the manifestations of pre-eclampsia during pregnancy (high blood pressure, multi-organ disease, and placental dysfunction) resolve after delivery, a lifelong elevated CVD risk remains. METHOD: An assessment including both cardiac and placental Magnetic Resonance Imaging (MRI) optimised for use in pregnancy and bespoke to the expected changes was developed. Simultaneous structural and functional MRI data from the placenta, the heart and the fetus were obtained in a total of 32 pregnant women (gestational ages from 18.1 to 37.5 weeks), including uncomplicated pregnancies and five cases with early onset pre-eclampsia. RESULTS: The achieved comprehensive MR acquisition was able to demonstrate a phenotype associated with pre-eclampsia linking both placental and cardiac factors, reduced mean T2* (p < 0.005), increased heterogeneity (p < 0.005) and a trend towards an increase in cardiac work, larger average mass (109.4 vs 93.65 gr), wall thickness (7.0 vs 6.4 mm), blood pool volume (135.7 vs 127.48 mL) and mass to volume ratio (0.82 vs 0.75). The cardiac output in the controls was, controlling for gestational age, positively correlated with placental volume (p < 0.05). DISCUSSION: The CARP study constitutes the first joint assessment of functional and structural properties of the cardiac system and the placenta during pregnancy. Early indications of cardiac remodelling in pre-eclampsia were demonstrated paving the way for larger studies.


Subject(s)
Cardiovascular Diseases , Carps , Pre-Eclampsia , Animals , Female , Humans , Placenta/diagnostic imaging , Pre-Eclampsia/diagnostic imaging , Pregnancy , Pregnancy, High-Risk
12.
J Cardiovasc Magn Reson ; 24(1): 5, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35000609

ABSTRACT

BACKGROUND: The application of cardiovascular magnetic resonance angiography (CMRA) for the assessment of thoracic aortic disease is often associated with prolonged and unpredictable acquisition times and residual motion artefacts. To overcome these limitations, we have integrated undersampled acquisition with image-based navigators and inline non-rigid motion correction to enable a free-breathing, contrast-free Cartesian CMRA framework for the visualization of the thoracic aorta in a short and predictable scan of 3 min. METHODS: 35 patients with thoracic aortic disease (36 ± 13y, 14 female) were prospectively enrolled in this single-center study. The proposed 3D T2-prepared balanced steady state free precession (bSSFP) sequence with image-based navigator (iNAV) was compared to the clinical 3D T2-prepared bSSFP with diaphragmatic-navigator gating (dNAV), in terms of image acquisition time. Three cardiologists blinded to iNAV vs. dNAV acquisition, recorded image quality scores across four aortic segments and their overall diagnostic confidence. Contrast ratio (CR) and relative standard deviation (RSD) of signal intensity (SI) in the corresponding segments were estimated. Co-axial aortic dimensions in six landmarks were measured by two readers to evaluate the agreement between the two methods, along with inter-observer and intra-observer agreement. Kolmogorov-Smirnov test, Mann-Whitney U (MWU), Bland-Altman analysis (BAA), intraclass correlation coefficient (ICC) were used for statistical analysis. RESULTS: The scan time for the iNAV-based approach was significantly shorter (3.1 ± 0.5 min vs. 12.0 ± 3.0 min for dNAV, P = 0.005). Reconstruction was performed inline in 3.0 ± 0.3 min. Diagnostic confidence was similar for the proposed iNAV versus dNAV for all three reviewers (Reviewer 1: 3.9 ± 0.3 vs. 3.8 ± 0.4, P = 0.7; Reviewer 2: 4.0 ± 0.2 vs. 3.9 ± 0.3, P = 0.4; Reviewer 3: 3.8 ± 0.4 vs. 3.7 ± 0.6, P = 0.3). The proposed method yielded higher image quality scores in terms of artefacts from respiratory motion, and non-diagnostic images due to signal inhomogeneity were observed less frequently. While the dNAV approach outperformed the iNAV method in the CR assessment, the iNAV sequence showed improved signal homogeneity along the entire thoracic aorta [RSD SI 5.1 (4.4, 6.5) vs. 6.5 (4.6, 8.6), P = 0.002]. BAA showed a mean difference of < 0.05 cm across the 6 landmarks between the two datasets. ICC showed excellent inter- and intra-observer reproducibility. CONCLUSIONS: Thoracic aortic iNAV-based CMRA with fast acquisition (~ 3 min) and inline reconstruction (3 min) is proposed, resulting in high diagnostic confidence and reproducible aortic measurements.


Subject(s)
Aorta, Thoracic , Magnetic Resonance Angiography , Aorta, Thoracic/diagnostic imaging , Female , Heart , Humans , Imaging, Three-Dimensional , Predictive Value of Tests , Reproducibility of Results
13.
Cardiol Young ; 32(7): 1053-1060, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34470692

ABSTRACT

BACKGROUND AND AIM: Heterotaxy syndrome, being right atrial isomerism (RAI) or left atrial isomerism (LAI), often presents with Congenital Heart Disease (CHD). Intestinal abnormalities, including malrotation are common. We assessed the spectrum of gut abnormalities and their impact on medium-term outcome in a cohort of patients with fetal and postnatal diagnoses of heterotaxy syndrome. METHODS: We reviewed the cardiology records of heterotaxy syndrome patients from two centres, regarding the presence of CHD, time for cardiac intervention, presence of gastrointestinal abnormalities, and type/time of surgery. A questionnaire about gastrointestinal status was sent to patients <18 years old. Kaplan-Meier curves were derived for survival data and freedom from intervention. RESULTS: Data were included for 182 patients (49 RAI and 133 LAI) of 247 identified. Questionnaires were sent to 77 families and 47 replied. CHD was present in all RAI and 61.7% of LAI cases. Thirty-eight patients had abdominal surgery (20.9%), similar for RAI and LAI (20.4% versus 21%, p> 0.99): Ladd procedure in 17 (44.7%), non-Ladd in 12 (31.5%), and both procedures in 9 (23.7%). Ten-year freedom from Ladd procedure for all was 86% for the whole cohort (RAI = 87%; LAI = 85%, p = 0.98). Freedom from any gastrointestinal surgery at 10 years was 79% for the whole cohort (RAI = 77%; LAI = 80%, p = 0.54). Ten-year freedom from cardiac surgery was 31% for the whole cohort (RAI = 6%; LAI = 43%, p < 0.0001). CONCLUSIONS: In our cohort, one in five patients required abdominal surgery, mostly in their first year of life, similar for RAI and LAI. Between 1 and 10 years of follow-up, the impact of gastrointestinal abnormalities on outcome was minimal. Medium term survival was related to CHD.


Subject(s)
Heart Defects, Congenital , Heterotaxy Syndrome , Adolescent , Cohort Studies , Comorbidity , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/surgery , Heterotaxy Syndrome/epidemiology , Heterotaxy Syndrome/surgery , Humans , Retrospective Studies
14.
Magn Reson Med ; 87(4): 1992-2002, 2022 04.
Article in English | MEDLINE | ID: mdl-34799854

ABSTRACT

PURPOSE: To develop a simultaneous T1 , T2 , and T1ρ cardiac magnetic resonance fingerprinting (MRF) approach to enable comprehensive contrast agent-free myocardial tissue characterization in a single breath-hold scan. METHODS: A 2D gradient-echo electrocardiogram-triggered cardiac MRF sequence with low flip angles, varying magnetization preparation, and spiral trajectory was acquired at 1.5 T to encode T1 , T2 , and T1⍴ simultaneously. The MRF images were reconstructed using low-rank inversion, regularized with a multicontrast patch-based higher-order reconstruction. Parametric maps were generated and matched in the singular value domain to extended phase graph-based dictionaries. The proposed approach was tested in phantoms and 10 healthy subjects and compared against conventional methods in terms of coefficients of determination and best fits for the phantom study, and in terms of Bland-Altman agreement, average values and coefficient of variation of T1 , T2 , and T1⍴ for the healthy subjects study. RESULTS: The T1 , T2 , and T1⍴ MRF values showed excellent correlation with conventional spin-echo and clinical mapping methods in phantom studies (r2 > 0.97). Measured MRF values in myocardial tissue (mean ± SD) were 1133 ± 33 ms, 38.8 ± 3.5 ms, and 52.0 ± 4.0 ms for T1 , T2 and T1⍴ , respectively, against 1053 ± 47 ms, 50.4 ± 3.9 ms, and 55.9 ± 3.3 ms for T1 modified Look-Locker inversion imaging, T2 gradient and spin echo, and T1⍴ turbo field echo, respectively. CONCLUSION: A cardiac MRF approach for simultaneous quantification of myocardial T1 , T2 , and T1ρ in a single breath-hold MR scan of about 16 seconds has been proposed. The approach has been investigated in phantoms and healthy subjects showing good agreement with reference spin echo measurements and conventional clinical maps.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Heart/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Spectroscopy , Phantoms, Imaging
15.
Front Cardiovasc Med ; 9: 991383, 2022.
Article in English | MEDLINE | ID: mdl-36756640

ABSTRACT

Cardiometabolic disease refers to the spectrum of chronic conditions that include diabetes, hypertension, atheromatosis, non-alcoholic fatty liver disease, and their long-term impact on cardiovascular health. Histological studies have confirmed several modifications at the tissue level in cardiometabolic disease. Recently, quantitative MR methods have enabled non-invasive myocardial and liver tissue characterization. MR relaxation mapping techniques such as T1, T1ρ, T2 and T2* provide a pixel-by-pixel representation of the corresponding tissue specific relaxation times, which have been shown to correlate with fibrosis, altered tissue perfusion, oedema and iron levels. Proton density fat fraction mapping approaches allow measurement of lipid tissue in the organ of interest. Several studies have demonstrated their utility as early diagnostic biomarkers and their potential to bear prognostic implications. Conventionally, the quantification of these parameters by MRI relies on the acquisition of sequential scans, encoding and mapping only one parameter per scan. However, this methodology is time inefficient and suffers from the confounding effects of the relaxation parameters in each single map, limiting wider clinical and research applications. To address these limitations, several novel approaches have been proposed that encode multiple tissue parameters simultaneously, providing co-registered multiparametric information of the tissues of interest. This review aims to describe the multi-faceted myocardial and hepatic tissue alterations in cardiometabolic disease and to motivate the application of relaxometry and proton-density cardiac and liver tissue mapping techniques. Current approaches in myocardial and liver tissue characterization as well as latest technical developments in multiparametric quantitative MRI are included. Limitations and challenges of these novel approaches, and recommendations to facilitate clinical validation are also discussed.

16.
Front Cardiovasc Med ; 8: 818765, 2021.
Article in English | MEDLINE | ID: mdl-35083303

ABSTRACT

Artificial intelligence (AI) refers to the area of knowledge that develops computerised models to perform tasks that typically require human intelligence. These algorithms are programmed to learn and identify patterns from "training data," that can be subsequently applied to new datasets, without being explicitly programmed to do so. AI is revolutionising the field of medical imaging and in particular of Cardiovascular Magnetic Resonance (CMR) by providing deep learning solutions for image acquisition, reconstruction and analysis, ultimately supporting the clinical decision making. Numerous methods have been developed over recent years to enhance and expedite CMR data acquisition, image reconstruction, post-processing and analysis; along with the development of promising AI-based biomarkers for a wide spectrum of cardiac conditions. The exponential rise in the availability and complexity of CMR data has fostered the development of different AI models. Integration in clinical routine in a meaningful way remains a challenge. Currently, innovations in this field are still mostly presented in proof-of-concept studies with emphasis on the engineering solutions; often recruiting small patient cohorts or relying on standardised databases such as Multi-ethnic Study on atherosclerosis (MESA), UK Biobank and others. The wider incorporation of clinically valid endpoints such as symptoms, survival, need and response to treatment remains to be seen. This review briefly summarises the current principles of AI employed in CMR and explores the relevant prospective observational studies in cardiology patient cohorts. It provides an overview of clinical studies employing undersampled reconstruction techniques to speed up the scan encompassing cine imaging, whole-heart imaging, multi-parametric mapping and magnetic resonance fingerprinting along with the clinical utility of AI applications in image post-processing, and analysis. Specific focus is given to studies that have incorporated CMR-derived prediction models for prognostication in cardiac disease. It also discusses current limitations and proposes potential developments to enable multi-disciplinary collaboration for improved evidence-based medicine. AI is an extremely promising field and the timely integration of clinician's input in the ingenious technical investigator's paradigm holds promise for a bright future in the medical field.

17.
Acta Paediatr ; 108(1): 28-36, 2019 01.
Article in English | MEDLINE | ID: mdl-30222897

ABSTRACT

AIM: A spinal epidural abscess (SEA) is a rare paediatric bacterial infection, with possible devastating neurological sequelae. We explored localisation in the cervical segment, which is unusual, but more dangerous, than other SEAs. METHODS: We describe 22 cases (12 male) of paediatric SEAs without risk factors: 21 from a literature search from 2000 to 2017 and a 30-month-old boy with a spontaneous cervical SEA due to Group A Streptococcus. RESULTS: The average age was eight years and the symptoms were mainly fever, back pain and motor deficit, with an aetiological diagnosis in 68%. Methicillin-sensitive Staphylococcus aureus was isolated in six patients, methicillin-resistant Staphylococcus aureus in two, Staphylococcus aureus with unknown susceptibility patterns in three and Group A Streptococcus in four. All patients underwent gadolinium-enhanced magnetic resonance imaging and most abscesses were localised in the thoracic and lumbar areas. More than half (59%) underwent surgery to remove pus and granulation tissue and nine were just treated with antimicrobial therapy for an average of 5.3 weeks. Most patients had good outcomes. CONCLUSION: SEAs were underestimated in children due to the rarity and spectrum of differential diagnoses. Timely diagnosis, immediate antibiotics, spinal magnetic resonance imaging and prompt neurosurgical consultations were essential for favourable outcomes.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cervical Vertebrae , Epidural Abscess/diagnostic imaging , Epidural Abscess/drug therapy , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/drug therapy , Child, Preschool , Drug Therapy, Combination , Emergency Service, Hospital , Epidural Abscess/microbiology , Fever/diagnosis , Fever/etiology , Gadolinium , Greece , Hospitals, General , Humans , Infusions, Intravenous , Magnetic Resonance Imaging/methods , Male , Muscle Weakness/diagnosis , Muscle Weakness/etiology , Neck Pain/diagnosis , Neck Pain/etiology , Prognosis , Rare Diseases , Risk Assessment , Severity of Illness Index , Staphylococcal Infections/diagnosis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...