Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(5): e0192622, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36073817

ABSTRACT

The ability to overcome stressful environments is critical for pathogen survival in the host. One challenge for bacteria is the exposure to reactive chlorine species (RCS), which are generated by innate immune cells as a critical part of the oxidative burst. Hypochlorous acid (HOCl) is the most potent antimicrobial RCS and is associated with extensive macromolecular damage in the phagocytized pathogen. However, bacteria have evolved defense strategies to alleviate the effects of HOCl-mediated damage. Among these are RCS-sensing transcriptional regulators that control the expression of HOCl-protective genes under non-stress and HOCl stress. Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections (UTIs), is particularly exposed to infiltrating neutrophils during pathogenesis; however, their responses to and defenses from HOCl are still completely unexplored. Here, we present evidence that UPEC strains tolerate higher levels of HOCl and are better protected from neutrophil-mediated killing compared with other E. coli. Transcriptomic analysis of HOCl-stressed UPEC revealed the upregulation of an operon consisting of three genes, one of which encodes the transcriptional regulator RcrR. We identified RcrR as a HOCl-responsive transcriptional repressor, which, under non-stress conditions, is bound to the operator and represses the expression of its target genes. During HOCl exposure, however, the repressor forms reversible intermolecular disulfide bonds and dissociates from the DNA resulting in the derepression of the operon. Deletion of one of the target genes renders UPEC significantly more susceptible to HOCl and phagocytosis indicating that the HOCl-mediated induction of the regulon plays a major role for UPEC's HOCl resistance. IMPORTANCE How do pathogens deal with antimicrobial oxidants produced by the innate immune system during infection? Uropathogenic Escherichia coli (UPEC), the most common etiological agent of urinary tract infections (UTIs), is particularly exposed to infiltrating neutrophils and, therefore, must counter elevated levels of the antimicrobial oxidant HOCl to establish infection. Our study provides fundamentally new insights into a defense mechanism that enables UPEC to fend off the toxic effects of HOCl stress. Intriguingly, the defense system is predominantly found in UPEC and absent in noninvasive enteropathogenic E. coli. Our data suggest expression of the target gene rcrB is exclusively responsible for UPEC's increased HOCl tolerance in culture and contributes to UPEC's survival during phagocytosis. Thus, this novel HOCl stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Uropathogenic Escherichia coli/metabolism , Chlorine/pharmacology , Chlorine/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hypochlorous Acid/pharmacology , Escherichia , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Oxidation-Reduction , Anti-Bacterial Agents/pharmacology , Oxidants/pharmacology , Disulfides/metabolism
2.
Immunity ; 54(7): 1377-1391, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260886

ABSTRACT

Neutrophils are immune cells with unusual biological features that furnish potent antimicrobial properties. These cells phagocytose and subsequently kill prokaryotic and eukaryotic organisms very efficiently. Importantly, it is not only their ability to attack microbes within a constrained intracellular compartment that endows neutrophils with antimicrobial function. They can unleash their effectors into the extracellular space, where, even post-mortem, their killing machinery can endure and remain functional. The antimicrobial activity of neutrophils must not be misconstrued as being microbe specific and should be viewed more generally as biotoxic. Outside of fighting infections, neutrophils can harness their noxious machinery in other contexts, like cancer. Inappropriate or dysregulated neutrophil activation damages the host and contributes to autoimmune and inflammatory disease. Here we review a number of topics related to neutrophil biology based on contemporary findings.


Subject(s)
Neutrophils/immunology , Animals , Extracellular Space/immunology , Humans , Inflammation/immunology , Neutrophil Activation/immunology , Phagocytosis/immunology
3.
Infect Immun ; 88(7)2020 06 22.
Article in English | MEDLINE | ID: mdl-32152198

ABSTRACT

Neutrophils kill invading microbes and therefore represent the first line of defense of the innate immune response. Activated neutrophils assemble NADPH oxidase to convert substantial amounts of molecular oxygen into superoxide, which, after dismutation into peroxide, serves as the substrate for the generation of the potent antimicrobial hypochlorous acid (HOCl) in the phagosomal space. In this minireview, we explore the most recent insights into physiological consequences of HOCl stress. Not surprisingly, Gram-negative bacteria have evolved diverse posttranslational defense mechanisms to protect their proteins, the main targets of HOCl, from HOCl-mediated damage. We discuss the idea that oxidation of conserved cysteine residues and partial unfolding of its structure convert the heat shock protein Hsp33 into a highly active chaperone holdase that binds unfolded proteins and prevents their aggregation. We examine two novel members of the Escherichia coli chaperone holdase family, RidA and CnoX, whose thiol-independent activation mechanism differs from that of Hsp33 and requires N-chlorination of positively charged amino acids during HOCl exposure. Furthermore, we summarize the latest findings with respect to another bacterial defense strategy employed in response to HOCl stress, which involves the accumulation of the universally conserved biopolymer inorganic polyphosphate. We then discuss sophisticated adaptive strategies that bacteria have developed to enhance their survival during HOCl stress. Understanding bacterial defense and survival strategies against one of the most powerful neutrophilic oxidants may provide novel insights into treatment options that potentially compromise the ability of pathogens to resist HOCl stress and therefore may increase the efficacy of the innate immune response.


Subject(s)
Bacteria/metabolism , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Defense Mechanisms , Hypochlorous Acid/metabolism , Neutrophils/metabolism , Oxidants/metabolism , Bacteria/immunology , Bacterial Infections/immunology , Bacterial Physiological Phenomena , Humans , Microbial Viability/immunology , Molecular Chaperones/metabolism , Neutrophils/immunology , Oxidation-Reduction , Oxidative Stress , Protein Binding , Respiratory Burst , Structure-Activity Relationship
4.
FEBS Open Bio ; 9(5): 925-934, 2019 05.
Article in English | MEDLINE | ID: mdl-30985987

ABSTRACT

Human aldehyde oxidase (hAOX1) is a molybdenum enzyme with high toxicological importance, but its physiological role is still unknown. hAOX1 metabolizes different classes of xenobiotics and is one of the main drug-metabolizing enzymes in the liver, along with cytochrome P450. hAOX1 oxidizes and inactivates a large number of drug molecules and has been responsible for the failure of several phase I clinical trials. The interindividual variability of drug-metabolizing enzymes caused by single nucleotide polymorphisms (SNPs) is highly relevant in pharmaceutical treatments. In this study, we present the crystal structure of the inactive variant G1269R, revealing the first structure of a molybdenum cofactor (Moco)-free form of hAOX1. These data allowed to model, for the first time, the flexible Gate 1 that controls access to the active site. Furthermore, we inspected the thermostability of wild-type hAOX1 and hAOX1 with various SNPs (L438V, R1231H, G1269R or S1271L) by CD spectroscopy and ThermoFAD, revealing that amino acid exchanges close to the Moco site can impact protein stability up to 10 °C. These results correlated with biochemical and structural data and enhance our understanding of hAOX1 and the effect of SNPs in the gene encoding this enzyme in the human population. ENZYMES: Aldehyde oxidase (EC1.2.3.1); xanthine dehydrogenase (EC1.17.1.4); xanthine oxidase (EC1.1.3.2). DATABASES: Structural data are available in the Protein Data Bank under the accession number 6Q6Q.


Subject(s)
Aldehyde Oxidase/chemistry , Polymorphism, Single Nucleotide , Coenzymes , Crystallography, X-Ray , Humans , Metalloproteins , Models, Molecular , Molybdenum Cofactors , Pteridines
5.
PLoS One ; 12(7): e0182061, 2017.
Article in English | MEDLINE | ID: mdl-28750088

ABSTRACT

Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. The physiological function of mammalian AOX isoenzymes is still unclear, however, human AOX (hAOX1) is an emerging enzyme in phase-I drug metabolism. Indeed, the number of xenobiotics acting as hAOX1 substrates is increasing. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified within the hAOX1 gene. SNPs are a major source of inter-individual variability in the human population, and SNP-based amino acid exchanges in hAOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. In this report we selected ten novel SNPs resulting in amino acid exchanges in proximity to the FAD site of hAOX1 and characterized the purified enzymes after heterologous expression in Escherichia coli. The hAOX1 variants were characterized carefully by quantitative differences in their ability to produce superoxide radical. ROS represent prominent key molecules in physiological and pathological conditions in the cell. Our data reveal significant alterations in superoxide anion production among the variants. In particular the SNP-based amino acid exchange L438V in proximity to the isoalloxanzine ring of the FAD cofactor resulted in increased rate of superoxide radical production of 75%. Considering the high toxicity of the superoxide in the cell, the hAOX1-L438V SNP variant is an eventual candidate for critical or pathological roles of this natural variant within the human population.


Subject(s)
Aldehyde Oxidase/genetics , Polymorphism, Single Nucleotide/genetics , Reactive Oxygen Species/metabolism , Aldehyde Oxidase/chemistry , Aldehyde Oxidase/isolation & purification , Amino Acids/genetics , Anaerobiosis , Catalytic Domain , Coenzymes/metabolism , Electron Transport , Flavin-Adenine Dinucleotide/metabolism , Humans , Iron/metabolism , Kinetics , Models, Molecular , Molybdenum/metabolism , Mutant Proteins/isolation & purification , NAD/metabolism , Onium Compounds/metabolism , Protein Multimerization , Spectrophotometry, Ultraviolet , Superoxides/metabolism
6.
Curr Opin Chem Biol ; 37: 39-47, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28126656

ABSTRACT

Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. Mammals are characterized by a complement of species-specific AOX isoenzymes, that varies from one in humans (AOX1) to four in rodents (AOX1, AOX2, AOX3 and AOX4). The physiological function of mammalian AOX isoenzymes is unknown, although human AOX1 is an emerging enzyme in phase-I drug metabolism. Indeed, the number of therapeutic molecules under development which act as AOX substrates is increasing. The recent crystallization and structure determination of human AOX1 as well as mouse AOX3 has brought new insights into the mechanisms underlying substrate/inhibitor binding as well as the catalytic activity of this class of enzymes.


Subject(s)
Aldehyde Oxidase/chemistry , Aldehyde Oxidase/metabolism , Mammals , Pharmaceutical Preparations/metabolism , Xenobiotics/metabolism , Aldehyde Oxidase/antagonists & inhibitors , Aldehyde Oxidase/genetics , Animals , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Polymorphism, Single Nucleotide
7.
Drug Metab Dispos ; 44(8): 1277-85, 2016 08.
Article in English | MEDLINE | ID: mdl-26842593

ABSTRACT

Aldehyde oxidase (AOX1) is an enzyme with broad substrate specificity, catalyzing the oxidation of a wide range of endogenous and exogenous aldehydes as well as N-heterocyclic aromatic compounds. In humans, the enzyme's role in phase I drug metabolism has been established and its importance is now emerging. However, the true physiologic function of AOX1 in mammals is still unknown. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified in human AOX1. SNPs are a major source of interindividual variability in the human population, and SNP-based amino acid exchanges in AOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. For the reliable analysis of the effect of amino acid exchanges in human proteins, the existence of reproducible expression systems for the production of active protein in ample amounts for kinetic, spectroscopic, and crystallographic studies is required. In our study we report an optimized expression system for hAOX1 in Escherichia coli using a codon-optimized construct. The codon-optimization resulted in an up to 15-fold increase of protein production and a simplified purification procedure. The optimized expression system was used to study three SNPs that result in amino acid changes C44W, G1269R, and S1271L. In addition, the crystal structure of the S1271L SNP was solved. We demonstrate that the recombinant enzyme can be used for future studies to exploit the role of AOX in drug metabolism, and for the identification and synthesis of new drugs targeting AOX when combined with crystallographic and modeling studies.


Subject(s)
Aldehyde Oxidase/biosynthesis , Aldehyde Oxidase/genetics , Polymorphism, Single Nucleotide , Protein Engineering/methods , Aldehyde Oxidase/chemistry , Codon , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression Regulation, Enzymologic , Genotype , Humans , Kinetics , Models, Molecular , Phenotype , Protein Conformation , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Structure-Activity Relationship , Substrate Specificity
8.
Nat Chem Biol ; 11(10): 779-83, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26322824

ABSTRACT

Aldehyde oxidase (AOX) is a xanthine oxidase (XO)-related enzyme with emerging importance due to its role in the metabolism of drugs and xenobiotics. We report the first crystal structures of human AOX1, substrate free (2.6-Å resolution) and in complex with the substrate phthalazine and the inhibitor thioridazine (2.7-Å resolution). Analysis of the protein active site combined with steady-state kinetic studies highlight the unique features, including binding and substrate orientation at the active site, that characterize human AOX1 as an important drug-metabolizing enzyme. Structural analysis of the complex with the noncompetitive inhibitor thioridazine revealed a new, unexpected and fully occupied inhibitor-binding site that is structurally conserved among mammalian AOXs and XO. The new structural insights into the catalytic and inhibition mechanisms of human AOX that we now report will be of great value for the rational analysis of clinical drug interactions involving inhibition of AOX1 and for the prediction and design of AOX-stable putative drugs.


Subject(s)
Aldehyde Oxidase/chemistry , Aldehyde Oxidase/metabolism , Enzyme Inhibitors/metabolism , Xenobiotics/metabolism , Aldehyde Oxidase/antagonists & inhibitors , Aldehyde Oxidase/genetics , Aldehyde Oxidoreductases/antagonists & inhibitors , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Humans , Mice , Models, Molecular , Protein Binding , Protein Conformation , Species Specificity , Substrate Specificity , Xenobiotics/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...