Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955494

ABSTRACT

People with sickle cell disease (SCD) often experience chronic pain as well as unpredictable episodes of acute pain, which significantly affect their quality of life and life expectancy. Current treatment strategies for SCD-associated pain primarily rely on opioid analgesics, which have limited efficacy and cause serious adverse effects. Cannabis has emerged as a potential alternative, yet its efficacy remains uncertain. In this study, we investigated the antinociceptive effects of Δ9-tetrahydrocannabinol (THC), cannabis' intoxicating constituent, in male HbSS mice, which express >99% human sickle hemoglobin, and male HbAA mice, which express normal human hemoglobin A, as a control. Acute THC administration (0.1-3 mg-kg-1, intraperitoneal, i.p.) dose-dependently reduced mechanical and cold hypersensitivity in HbSS, but not HbAA mice. In the tail-flick assay, THC (1 and 3 mg-kg-1, i.p.) produced substantial antinociceptive effects in HbSS mice. By contrast, THC (1 mg-kg-1, i.p.) did not alter anxiety-like behavior (elevated plus maze) or long-term memory (24-h novel object recognition). Subchronic THC treatment (1 and 3 mg-kg-1, i.p.) provided sustained relief of mechanical hypersensitivity but led to tolerance in cold hypersensitivity in HbSS mice. Together, the findings identify THC as a possible therapeutic option for the management of chronic pain in SCD. Further research is warranted to elucidate its mechanism of action and possible interaction with other cannabis constituents. Significance Statement The study explores THC's efficacy in alleviating pain in sickle cell disease (SCD) using a humanized mouse model. Findings indicate that acute THC administration reduces mechanical and cold hypersensitivity in SCD mice without impacting emotional and cognitive dysfunction. Subchronic THC treatment offers sustained relief of mechanical hypersensitivity but leads to cold hypersensitivity tolerance. These results offer insights into THC's potential as an alternative pain management option in SCD, highlighting both its benefits and limitations.

2.
Nat Commun ; 15(1): 1705, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402219

ABSTRACT

Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP. This effect was phenocopied by NAAA deletion and depended on PPAR-α recruitment. Mice lacking NAAA in CD11b+ cells - monocytes, macrophages, and neutrophils - were resistant to HP induction. Conversely, mice overexpressing NAAA or lacking PPAR-α in the same cells were constitutively primed. Depletion of monocytes, but not resident macrophages, generated mice that were refractory to HP. The results identify NAAA-regulated signaling in monocytes as a control node in the induction of HP and, potentially, the transition to pain chronicity.


Subject(s)
Amidohydrolases , Monocytes , Humans , Enzyme Inhibitors/pharmacology , Hyperalgesia/genetics , Lipids , Pain , PPAR alpha , Animals , Mice
3.
Pharmacol Res ; 199: 107049, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159785

ABSTRACT

Adolescent exposure to Δ9-tetrahydrocannabinol (THC) has enduring effects on energy metabolism and immune function. Prior work showed that daily administration of a low-impact dose of THC (5 mg/kg, intraperitoneal) during adolescence alters transcription in adult microglia and disrupts their response to bacterial endotoxin or social stress. To explore the lasting impact of adolescent THC exposure on the brain's reaction to viral infection, we administered THC (5 mg/kg, intraperitoneal) in male and female mice once daily on postnatal day (PND) 30-43. When the mice reached adulthood (PND 70), we challenged them with the viral mimic, polyinosinic acid:polycytidylic acid [Poly(I:C)], and assessed sickness behavior (motor activity, body temperature) and whole brain gene transcription. Poly(I:C) caused an elevation in body temperature which was lessened by prior THC exposure in female but not male mice. Adolescent THC exposure did not affect the locomotor response to Poly(I:C) in either sex. Transcriptomic analyses showed that Poly(I:C) produced a substantial upregulation of immune-related genes in the brain, which was decreased by THC in females. Additionally, the viral mimic caused a male-selective downregulation in transcription of genes involved in neurodevelopment and synaptic transmission, which was abrogated by adolescent THC treatment. The results indicate that Poly(I:C) produces complex transcriptional alterations in the mouse brain, which are sexually dimorphic and differentially affected by early-life THC exposure. In particular, adolescent THC dampens the brain's antiviral response to Poly(I:C) in female mice and prevents the transcriptional downregulation of neuron-related genes caused by the viral mimic in male mice.


Subject(s)
Dronabinol , Virus Diseases , Animals , Mice , Male , Female , Dronabinol/pharmacology , Brain , Synaptic Transmission , Neurons
4.
Article in English | MEDLINE | ID: mdl-37932554

ABSTRACT

RATIONALE: Exposure to traumatic events can lead to alterations in social and anxiety-related behaviors. Emerging evidence suggests that peripheral host-defense processes are implicated in the expression of stress-induced behavioral responses and may be targeted to mitigate the negative sequalae of stress exposure. OBJECTIVES: In this study, we used the peripherally restricted FAAH inhibitor URB937 to investigate the effects of the fatty acyl ethanolamide (FAE) family of lipid mediators - which include the endocannabinoid anandamide and the endogenous PPAR-α agonists, oleoylethanolamide and palmitoylethanolamide - on behavioral and peripheral biochemical responses to two ethologically distinct rat models of stress. METHODS: Male adult rats were exposed to acute social defeat, a model of psychological stress (Experiment 1), or to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a test of innate predator-evoked fear (Experiment 2), and subsequently treated with URB937 (1 or 3 mg/kg, intraperitoneal) or vehicle. Behavioral analyses were conducted 24 h (Experiment 1) or 7 days (Experiment 2) after exposure. RESULTS: URB937 administration prevented the emergence of both social avoidance behavior after social defeat stress and anxiety-related behaviors after TMT exposure. Further, URB937 administration blocked social defeat-induced transient increase in plasma concentrations of pro-inflammatory cytokines and the elevation in plasma corticosterone levels observed 24 h after social defeat CONCLUSIONS: Enhancement of peripheral FAAH-regulated lipid signaling prevents the emergence of stress-induced social avoidance and anxiety-like behaviors in male rats through mechanisms that may involve an attenuation of peripheral cytokine release induced by stress exposure.

5.
Cell Metab ; 35(7): 1227-1241.e7, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37267956

ABSTRACT

One of cannabis' most iconic effects is the stimulation of hedonic high-calorie eating-the "munchies"-yet habitual cannabis users are, on average, leaner than non-users. We asked whether this phenotype might result from lasting changes in energy balance established during adolescence, when use of the drug often begins. We found that daily low-dose administration of cannabis' intoxicating constituent, Δ9-tetrahydrocannabinol (THC), to adolescent male mice causes an adult metabolic phenotype characterized by reduced fat mass, increased lean mass and utilization of fat as fuel, partial resistance to diet-induced obesity and dyslipidemia, enhanced thermogenesis, and impaired cold- and ß-adrenergic receptor-stimulated lipolysis. Further analyses revealed that this phenotype is associated with molecular anomalies in the adipose organ, including ectopic overexpression of muscle-associated proteins and heightened anabolic processing. Thus, adolescent exposure to THC may promote an enduring "pseudo-lean" state that superficially resembles healthy leanness but might in fact be rooted in adipose organ dysfunction.


Subject(s)
Dronabinol , Obesity , Mice , Male , Animals , Dronabinol/pharmacology , Adiposity , Energy Intake , Homeostasis
6.
Article in English | MEDLINE | ID: mdl-37017699

ABSTRACT

BACKGROUND AND AIM: Post-traumatic stress disorder (PTSD), a chronic debilitating condition that affects nearly 5-10% of American adults, is treated with a handful of FDA-approved drugs that provide at best symptomatic relief and exert multiple side effects. Preclinical and clinical evidence shows that inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which deactivates the endocannabinoid anandamide, exhibit anxiolytic-like properties in animal models. In the present study, we investigated the effects of two novel brain-permeable FAAH inhibitors - the compounds ARN14633 and ARN14280 - in a rat model of predator stress-induced long-term anxiety used to study PTSD. METHODS: We exposed male Sprague-Dawley rats to 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a volatile constituent of fox feces, and assessed anxiety-like behaviors in the elevated plus maze (EPM) test seven days later. We measured FAAH activity using a radiometric assay and brain levels of FAAH substrates by liquid chromatography/tandem mass spectrometry. RESULTS: Rats challenged with TMT developed persistent (≥ 7 days) anxiety-like symptoms in the EPM test. Intraperitoneal administration of ARN14633 or ARN14280 1 h before testing suppressed TMT-induced anxiety-like behaviors with median effective doses (ED50) of 0.23 and 0.33 mg/kg, respectively. The effects were negatively correlated (ARN14663: R2 = 0.455; ARN14280: R2 = 0.655) with the inhibition of brain FAAH activity and were accompanied by increases in brain FAAH substrate levels. CONCLUSIONS: The results support the hypothesis that FAAH-regulated lipid signaling serves important regulatory functions in the response to stress and confirm that FAAH inhibitors may be useful for the management of PTSD.

7.
Exp Neurol ; 357: 114194, 2022 11.
Article in English | MEDLINE | ID: mdl-35932800

ABSTRACT

The intracellular lipid amidases, fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA), terminate the actions of anandamide and palmitoylethanolamide (PEA), two antinociceptive and anti-inflammatory lipid-derived mediators. Here we show, confirming prior research, that small-molecule inhibitors of peripheral FAAH (compound URB937) and systemic NAAA (compound ARN19702) individually attenuate, in male CD-1 mice, pain-related behaviors and paw inflammation in the formalin and carrageenan tests. More importantly, isobolographic analyses revealed that the combination of URB937 and ARN19702 produced substantial synergistic (greater than additive) antinociceptive effects in both models as well as additive anti-inflammatory effects in the carrageenan test. Together, the findings uncover a functional interplay between FAAH and NAAA substrates in the control of nociception, which might be exploited clinically to develop safe and effective pain management strategies.


Subject(s)
Amidohydrolases , Anti-Inflammatory Agents , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Carrageenan , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Male , Mice
8.
Pharmacology ; 107(7-8): 423-432, 2022.
Article in English | MEDLINE | ID: mdl-35691287

ABSTRACT

INTRODUCTION: Previous work suggests the existence of a paracrine signaling mechanism in which histamine released from visceral mast cells into the portal circulation contributes to fasting-induced ketogenesis by stimulating biosynthesis of the endogenous high-affinity PPAR-α agonist oleoylethanolamide (OEA). METHODS: Male C57Bl/6J mice were rendered obese by exposure to a high-fat diet (HFD; 60% fat). We measured histamine, OEA, and other fatty-acid ethanolamides by liquid-chromatography/mass spectrometry, gene transcription by RT-PCR, protein expression by ELISA, neutral lipid accumulation in the liver using Red Oil O and BODIPY staining, and collagen levels using picrosirius red staining. RESULTS: Long-term exposure to HFD suppressed both fasting-induced histamine release into portal blood and histamine-dependent OEA production in the liver. Additionally, subchronic OEA administration reduced lipid accumulation, inflammatory responses, and fibrosis in the liver of HFD-exposed mice. DISCUSSION: The results suggest that disruption of histamine-dependent OEA signaling in the liver might contribute to pathology in obesity-associated liver steatosis.


Subject(s)
Histamine , PPAR alpha , Animals , Diet, High-Fat/adverse effects , Endocannabinoids/metabolism , Histamine/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Oleic Acids , PPAR alpha/genetics
9.
Biol Psychiatry ; 92(11): 845-860, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35750512

ABSTRACT

BACKGROUND: During adolescence, microglia are actively involved in neocortical maturation while concomitantly undergoing profound phenotypic changes. Because the teenage years are also a time of experimentation with cannabis, we evaluated whether adolescent exposure to the drug's psychotropic constituent, Δ9-tetrahydrocannabinol (THC), might persistently alter microglia function. METHODS: We administered THC (5 mg/kg, intraperitoneal) once daily to male and female mice from postnatal day (PND) 30 to PND44 and examined the transcriptome of purified microglia in adult animals (PND70 and PND120) under baseline conditions or following either of two interventions known to recruit microglia: lipopolysaccharide injection and repeated social defeat. We used high-dimensional mass cytometry by time-of-flight to map brain immune cell populations after lipopolysaccharide challenge. RESULTS: Adolescent THC exposure produced in mice of both sexes a state of microglial dyshomeostasis that persisted until young adulthood (PND70) but receded with further aging (PND120). Key features of this state included broad alterations in genes involved in microglia homeostasis and innate immunity along with marked impairments in the responses to lipopolysaccharide- and repeated social defeat-induced psychosocial stress. The endocannabinoid system was also dysfunctional. The effects of THC were prevented by coadministration of either a global CB1 receptor inverse agonist or a peripheral CB1 neutral antagonist and were not replicated when THC was administered in young adulthood (PND70-84). CONCLUSIONS: Daily low-intensity CB1 receptor activation by THC during adolescence may disable critical functions served by microglia until young adulthood with potentially wide-ranging consequences for brain and mental health.


Subject(s)
Dronabinol , Microglia , Animals , Female , Male , Mice , Dronabinol/pharmacology , Lipopolysaccharides/pharmacology , Gonadal Steroid Hormones , Stress, Psychological , Homeostasis
10.
Sci Adv ; 7(43): eabi8834, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34678057

ABSTRACT

Chronic pain affects 1.5 billion people worldwide but remains woefully undertreated. Understanding the molecular events leading to its emergence is necessary to discover disease-modifying therapies. Here we show that N-acylethanolamine acid amidase (NAAA) is a critical control point in the progression to pain chronicity, which can be effectively targeted by small-molecule therapeutics that inhibit this enzyme. NAAA catalyzes the deactivating hydrolysis of palmitoylethanolamide, a lipid-derived agonist of the transcriptional regulator of cellular metabolism, peroxisome proliferator-activated receptor-α (PPAR-α). Our results show that disabling NAAA in spinal cord during a 72-h time window following peripheral tissue injury halts chronic pain development in male and female mice by triggering a PPAR-α-dependent reprogramming of local core metabolism from aerobic glycolysis, which is transiently enhanced after end-organ damage, to mitochondrial respiration. The results identify NAAA as a crucial control node in the transition to chronic pain and a molecular target for disease-modifying medicines.

11.
Eur Neuropsychopharmacol ; 53: 19-24, 2021 12.
Article in English | MEDLINE | ID: mdl-34358818

ABSTRACT

Early-life exposure to Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating constituent of cannabis, may produce enduring neurochemical changes in brain structures involved in the regulation of sociality but it is still unclear how such changes influence social behavior later in life. In the present study, we exposed male mice to moderate daily doses of Δ9-THC (5 mg/kg, intraperitoneal) during adolescence (postnatal day, PND, 30 to 43) and, when animals reached adulthood (PND70), we assessed their performance in the three-chamber social interaction task before and 3 weeks after injection of the chemical irritant formalin (1 % vol, intraplantar), which produces both immediate and persistent pain-related behaviors in mice. Prior Δ9-THC treatment did not alter social interaction in control adult mice but disrupted it in animals that developed lasting sensory abnormalities following formalin injection. The findings suggest that frequent exposure to Δ9-THC during adolescence causes in male mice a dormant dysfunction in social behavior which can be unmasked in adulthood when the animals experience an aversive state.


Subject(s)
Dronabinol , Hallucinogens , Animals , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Formaldehyde/toxicity , Male , Mice , Pain/chemically induced
12.
Neuropsychopharmacology ; 46(12): 2121-2131, 2021 11.
Article in English | MEDLINE | ID: mdl-34285372

ABSTRACT

In patients suffering from alcohol use disorder (AUD), stress and environmental stimuli associated with alcohol availability are important triggers of relapse. Activation of the nociceptin opioid peptide (NOP) receptor by its endogenous ligand Nociceptin/Orphanin FQ (N/OFQ) attenuates alcohol drinking and relapse in rodents, suggesting that NOP agonists may be efficacious in treating AUD. Intriguingly, recent data demonstrated that also blockade of NOP receptor reduced alcohol drinking in rodents. To explore further the potential of NOP antagonism, we investigated its effects on the reinstatement of alcohol-seeking elicited by administration of the α2 antagonist yohimbine (1.25 mg/kg, i.p.) or by environmental conditioning factors in male and female genetically selected alcohol-preferring Marchigian Sardinian (msP) rats. The selective NOP receptor antagonist LY2817412 (0.0, 3.0, 10.0, and 30.0 mg/kg) was first tested following oral (p.o.) administration. We then investigated the effects of LY2817412 (1.0, 3.0, 6.0 µg/µl/rat) microinjected into three candidate mesolimbic brain regions: the ventral tegmental area (VTA), the central nucleus of the amygdala (CeA), and the nucleus accumbens (NAc). We found that relapse to alcohol seeking was generally stronger in female than in male rats and oral administration of LY2817412 reduced yohimbine- and cue-induced reinstatement in both sexes. Following site-specific microinjections, LY2817412 reduced yohimbine-induced reinstatement of alcohol-seeking when administered into the VTA and the CeA, but not in the NAc. Cue-induced reinstatement was suppressed only when LY2817412 was microinjected into the VTA. Infusions of LY2817412 into the VTA and the CeA did not alter saccharin self-administration. These results demonstrate that NOP receptor blockade prevents the reinstatement of alcohol-seeking through modulation of mesolimbic system circuitry, providing further evidence of the therapeutic potential of NOP receptor antagonism in AUD.


Subject(s)
Alcoholism , Opioid Peptides , Receptors, Opioid/metabolism , Alcohol Drinking , Animals , Ethanol , Female , Humans , Male , Narcotic Antagonists/pharmacology , Rats , Self Administration , Nociceptin Receptor
13.
J Pharmacol Exp Ther ; 378(3): 215-221, 2021 09.
Article in English | MEDLINE | ID: mdl-34183435

ABSTRACT

Evidence suggests that Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating component of cannabis, causes enduring changes in the structure and function of adolescent brain circuits implicated in nociceptive responding. However, whether such changes might persistently disrupt nociceptive behaviors remains unknown. In the present study, we subjected C57BL6/J mice of both sexes to once-daily injections of Δ9-THC (5 mg-kg-1, i.p.) or vehicle throughout adolescence (PND 30-43) and, when the animals had reached adulthood (PND 70), assessed nociceptive behavior using the formalin and chronic constriction injury tests. We also investigated, using the tail immersion test, the antinociceptive effects of morphine and the development of tolerance to such effects. The results show that adolescent Δ9-THC exposure does not significantly impair nociceptive responding or morphine-related antinociception and tolerance. The findings suggest that frequent exposure to a moderate dose of Δ9-THC during adolescence does not permanently alter nociceptive circuits in male or female mice. SIGNIFICANCE STATEMENT: The endocannabinoid system serves critical functions in the central and peripheral nervous systems, including regulation of pain, and can be modified by prolonged exposure to the intoxicating constituent of cannabis, Δ9-tetrahydrocannabinol (Δ9-THC). This raises the possibility that regular use of Δ9-THC-containing cannabis during adolescence might cause changes in nociception that persist into adulthood. This study found that frequent early-life exposure to a moderate dose of Δ9-THC does not permanently alter nociceptive function in male or female mice.


Subject(s)
Dronabinol , Animals , Drug Tolerance , Male , Mice , Nociception
14.
J Pharmacol Exp Ther ; 378(2): 70-76, 2021 08.
Article in English | MEDLINE | ID: mdl-33986036

ABSTRACT

N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that stops the physiologic actions of palmitoylethanolamide, an endogenous lipid messenger that activates the transcription factor, peroxisome proliferator-activated receptor-α We have previously reported that the compound ARN19702 [(2-ethylsulfonylphenyl)-[(2S)-4-(6-fluoro-1,3-benzothiazol-2-yl)-2-methylpiperazin-1-yl]methanone] is an orally active, reversible NAAA inhibitor (IC50 on human NAAA = 230 nM) that produces remarkable protective effects against multiple sclerosis in mice. In the present study, we assessed the profile of ARN19702 in mouse and rat models of acute and neuropathic pain. Oral administration in male mice attenuated in a dose-dependent manner the spontaneous nocifensive response elicited by intraplantar formalin injection and the hypersensitivity caused by intraplantar carrageenan injection, paw incision, or sciatic nerve ligation. In male rats, ARN19702 reduced nociception associated with paclitaxel-induced neuropathy without development of subacute antinociceptive tolerance. Finally, ARN19702 (30 mg/kg, oral) did not produce place preference or alter exploratory motor behavior in male mice. The findings support the conclusion that NAAA is a suitable molecular target for the discovery of efficacious analgesic drugs devoid of rewarding potential. SIGNIFICANCE STATEMENT: This study evaluated the pharmacological profile of the orally bioavailable N-acylethanolamine acid amidase (NAAA) inhibitor (2-ethylsulfonylphenyl)-[(2S)-4-(6-fluoro-1,3-benzothiazol-2-yl)-2-methylpiperazin-1-yl]methanone (ARN19702) in mouse and rat models of neurogenic and inflammatory pain. The compound's potential rewarding and sedative effects were also examined. It is concluded that ARN19702 exhibits a broad analgesic profile that can be generalized across rodent species. The findings point to NAAA as a control node in the processing of neuropathic and inflammatory pain and to ARN19702 as a lead to uncover novel pain therapeutics devoid of addictive potential .


Subject(s)
Ethanolamines , Amidohydrolases , Animals , Mice , Rats
15.
Pharmacol Res ; 167: 105545, 2021 05.
Article in English | MEDLINE | ID: mdl-33722712

ABSTRACT

The use of products derived from hemp - i.e., cannabis varieties with low Δ9-tetrahydrocannabinol (Δ9-THC) content - as self-medication for pain and other health conditions is gaining in popularity but preclinical and clinical evidence for their effectiveness remains very limited. In the present study, we assessed the efficacy of a full-spectrum hemp oil extract (HOE; 10, 50 and 100 mg-kg-1; oral route), alone or in combination with the anti-inflammatory and analgesic agent palmitoylethanolamide (PEA; 10, 30, 100 and 300 mg-kg-1; oral route), in the formalin and chronic constriction injury (CCI) tests. We found that HOE exerts modest antinociceptive effects when administered alone, whereas the combination of sub-effective oral doses of HOE and PEA produces a substantial greater-than-additive alleviation of pain-related behaviors. Transcription of interleukin (IL)-6 and IL-10 increased significantly in lumbar spinal cord tissue on day 7 after CCI surgery, an effect that was attenuated to the same extent by HOE alone or by the HOE/PEA combination. Pharmacokinetic experiments show that co-administration of HOE enhances and prolongs systemic exposure to PEA. Collectively, our studies lend support to possible beneficial effects of using HOE in combination with PEA to treat acute and chronic pain.


Subject(s)
Acute Pain/drug therapy , Amides/therapeutic use , Analgesics/therapeutic use , Chronic Pain/drug therapy , Ethanolamines/therapeutic use , Palmitic Acids/therapeutic use , Plant Extracts/therapeutic use , Animals , Cannabis , Disease Models, Animal , Drug Synergism , Male , Mice
16.
Alcohol Alcohol ; 56(2): 240-249, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33401299

ABSTRACT

BACKGROUND AND AIMS: Andrographis paniculata is an annual herbaceous plant which belongs to the Acanthaceae family. Extracts from this plant have shown hepatoprotective, anti-inflammatory and antidiabetic properties, at least in part, through activation of the nuclear receptor Peroxisome Proliferator-Activated Receptor-gamma (PPAR γ). Recent evidence has demonstrated that activation of PPARγ reduces alcohol drinking and seeking in Marchigian Sardinian (msP) alcohol-preferring rats. METHODS: The present study evaluated whether A. paniculata reduces alcohol drinking and relapse in msP rats by activating PPARγ. RESULTS: Oral administration of an A. paniculata dried extract (0, 15, 150 mg/kg) lowered voluntary alcohol consumption in a dose-dependent manner and achieved ~65% reduction at the dose of 450 mg/kg. Water and food consumption were not affected by the treatment. Administration of Andrographolide (5 and 10 mg/kg), the main active component of A. paniculata, also reduced alcohol drinking. This effect was suppressed by the selective PPARγ antagonist GW9662. Subsequently, we showed that oral administration of A. paniculata (0, 150, 450 mg/kg) prevented yohimbine- but not cues-induced reinstatement of alcohol seeking. CONCLUSIONS: Results point to A. paniculata-mediated PPARγactivation as a possible therapeutic strategy to treat alcohol use disorder.


Subject(s)
Alcohol Drinking/drug therapy , Andrographis/chemistry , Diterpenes/pharmacology , PPAR gamma/agonists , Plant Extracts/pharmacology , Anilides/metabolism , Animals , Diterpenes/isolation & purification , Ethanol/metabolism , Male , Plant Extracts/isolation & purification , Rats , Self Administration
17.
Psychopharmacology (Berl) ; 238(1): 249-258, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33037452

ABSTRACT

RATIONALE: N-acylethanolamine acid amidase (NAAA) is an intracellular cysteine hydrolase that terminates the biological actions of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), two endogenous lipid-derived agonists of the nuclear receptor, and peroxisome proliferator-activated receptor-α. OEA and PEA are important regulators of energy balance, pain, and inflammation, but recent evidence suggests that they might also contribute to the control of reward-related behaviors. OBJECTIVES AND METHODS: In the present study, we investigated the effects of systemic and intracerebral NAAA inhibition in the two-bottle choice model of voluntary alcohol drinking and on operant alcohol self-administration. RESULTS: Intraperitoneal injections of the systemically active NAAA inhibitor ARN19702 (3 and 10 mg/kg) lowered voluntary alcohol intake in a dose-dependent manner, achieving ≈ 47% reduction at the 10 mg/kg dose (p < 0.001). Water, food, or saccharin consumption was not affected by the inhibitor. Similarly, ARN19702 dose-dependently attenuated alcohol self-administration under both fixed ratio 1 (FR-1) and progressive ratio schedules of reinforcement. Furthermore, microinjection of ARN19702 (1, 3 and 10 µg/µl) or of two chemically different NAAA inhibitors, ARN077 and ARN726 (both at 3 and 10 µg/µl), into the midbrain ventral tegmental area produced dose-dependent decreases in alcohol self-administration under FR-1 schedule. Microinjection of ARN19702 into the nucleus accumbens had no such effect. CONCLUSION: Collectively, the results point to NAAA as a possible molecular target for the treatment of alcohol use disorder.


Subject(s)
Alcohol Drinking/drug therapy , Amidohydrolases/antagonists & inhibitors , Choice Behavior/drug effects , Enzyme Inhibitors/pharmacology , Motivation/drug effects , Alcohol Drinking/psychology , Amides/pharmacology , Animals , Carbamates/pharmacology , Conditioning, Operant , Dose-Response Relationship, Drug , Endocannabinoids/pharmacology , Ethanolamines/pharmacology , Ethers, Cyclic/pharmacology , Male , Oleic Acids/pharmacology , Palmitic Acids/pharmacology , Rats , Reinforcement, Psychology , Self Administration
18.
Neuropsychopharmacology ; 46(2): 360-367, 2021 01.
Article in English | MEDLINE | ID: mdl-32610339

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is an intracellular transcription factor whose signaling activation by the selective agonist pioglitazone reduces alcohol drinking and alcohol-seeking behavior in rats. The present study utilized the two-bottle choice and operant self-administration procedures to investigate neuroanatomical substrates that mediate the effects of PPARγ agonism on alcohol drinking and seeking in msP rats. Bilateral infusions of pioglitazone (0, 5, and 10 µg/µl) in the rostromedial tegmental nucleus (RMTg) decreased voluntary alcohol drinking and alcohol self-administration. Microinjections of pioglitazone in the ventral tegmental area (VTA), central amygdala (CeA), and nucleus accumbens (NAc) shell had no such effect. Notably, water, food, and saccharin consumption was unaltered by either treatment. The yohimbine-induced reinstatement of alcohol seeking was prevented by infusions of pioglitazone (0, 2.5, 5, and 10 µg/µl) in the CeA, VTA, and RMTg but not in the NAc shell. These results emphasize the involvement of mesocorticolimbic circuitries in mediating the effects of PPARγ agonists on alcohol drinking and seeking. These results will facilitate future studies that investigate the pathophysiological role of PPARγ in alcohol use disorder and help clarify the mechanisms by which the activation of this receptor decreases the motivation for drinking.


Subject(s)
Alcohol Drinking , PPAR gamma , Alcohol Drinking/drug therapy , Animals , Nucleus Accumbens/metabolism , PPAR gamma/metabolism , Pioglitazone , Rats , Self Administration , Ventral Tegmental Area/metabolism
19.
Neuropsychopharmacology ; 45(8): 1330-1338, 2020 07.
Article in English | MEDLINE | ID: mdl-32375160

ABSTRACT

The endocannabinoid system is a key regulator of the response to psychological stress. Inhibitors of monoacylglycerol lipase (MGL), the enzyme that deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), exert anxiolytic-like effects in rodent models via 2-AG-dependent activation of CB1 cannabinoid receptors. In the present study, we examined whether the MGL inhibitor JZL184 might modulate persistent predator-induced fear in rats, a model that captures features of human post-traumatic stress disorder. Exposure to 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a volatile chemical that is innately aversive to some rodent species, produced in male rats a long-lasting anxiety-like state that was measured 7 days later in the elevated plus maze test. Systemic administration of JZL184 [4, 8 and 16 mg/kg, intraperitoneal (IP)] 4 h before testing caused dose-dependent inhibition of MGL activity and elevation of 2-AG content in brain tissue. Concomitantly, the inhibitor suppressed TMT-induced fear behaviors with a median effective dose (ED50) of 4 mg/kg. A similar behavioral response was observed with another MGL inhibitor, KML29 (4 and 16 mg/kg, IP). Surprisingly, the effect of JZL184 was prevented by co-administration of the CB2 inverse agonist AM630 (5 mg/kg, IP), but not the CB1 inverse agonist rimonabant (1 mg/kg, IP). Supporting mediation of the response by CB2 receptors, the CB2 agonist JWH133 (0.3, 1 and 3 mg/kg, IP) also produced anxiolytic-like effects in TMT-stressed rats, which were suppressed by AM630. Notably, (i) JWH133 was behaviorally ineffective in animals that had no prior experience with TMT; and (ii) CB2 mRNA levels in rat prefrontal cortex were elevated 7 days after exposure to the aversive odorant. The results suggest that JZL184 attenuates the behavioral consequences of predator stress through a mechanism that requires 2-AG-mediated activation of CB2 receptors, whose transcription may be induced by the stress itself.


Subject(s)
Anti-Anxiety Agents , Cannabinoids , Animals , Anti-Anxiety Agents/pharmacology , Arachidonic Acids/pharmacology , Cannabinoids/pharmacology , Endocannabinoids , Fear , Male , Monoacylglycerol Lipases , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Receptors, Cannabinoid
20.
J Med Chem ; 63(14): 7475-7490, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32191459

ABSTRACT

N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Inflammatory Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Inflammation/drug therapy , Amides/metabolism , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acid Sequence , Animals , Anti-Inflammatory Agents/chemistry , Cysteine/chemistry , Enzyme Inhibitors/chemistry , Ethanolamines/metabolism , Humans , Palmitic Acids/metabolism , Sequence Alignment , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...