Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26816, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434338

ABSTRACT

The competition of weeds with crops and nutrient management has a significant effect on the yield and economic efficiency of a country. This study aimed to evaluate the impacts of sulfur-coated urea and common urea on the yield and fatty acid composition of three coriander genotypes (Nahavandi, Pishgam, Ethiopia) under weeded and unweeded conditions. Traits including 1000 seeds weight, fruit yield, content of oil, and composition of fatty acids were examined. Nitrogen fertilizer and weeding treatments significantly improved the weight of 1000 seeds and weeds decreased the yield of fruit. The highest fruit yield was obtained by the Ethiopia genotype in weed-free conditions. Results showed that N fertilizer increased the oil percentage of coriander fruit. Urea fertilizer resulted in the highest oil content in the Nahavandi and Pishgam genotypes under weeded plots in the first and second years, respectively. Also, petroselinic, linoleic, and palmitic acids were the major coriander fatty acid composition. Nahavandi genotype showed the highest palmitic acid. Also, urea in the weed condition led to increase the linoleic acid content in the Nahavandi genotype. Overall, results showed that N fertilizer, especially urea, improved the quality characteristics of coriander fruits.

2.
Transgenic Res ; 27(3): 301-313, 2018 06.
Article in English | MEDLINE | ID: mdl-29728958

ABSTRACT

In this study, the compositions of transgenic potatoes (TPs) resistant to potato tuber moth (Phthorimaea operculella) were compared with those of its non-transgenic (NTP) counterparts. The light inducible promoter, phosphoenolpyruvate carboxylase led to the expression of Cry1Ab only in the leaves and light-treated tubers of the TPs. No significant differences were found in the moisture, ash, dry weight, total soluble protein, carbohydrate, starch, fiber, ascorbate, cations, anions, fatty acids, and glycoalkaloids contents of TP and NTP. Moreover, light treatment significantly affected the contents of ascorbate, acetate and nitrite anions, palmitic, stearic and linolenic fatty acids, α-haconine and α-solanine glycoalkaloids in TP and NTP tubers. While, significant differences were observed in the amino acid contents in light-treated tubers of TPs than the NTP ones. Although, light treatment in potato tubers resulted in marked metabolic changes, all the variations observed in the metabolites compositions were found to be within the desired reference ranges for potato plants. In conclusion, the results indicated that the TPs were substantially and nutritionally equivalent to the NTP counterparts.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Solanum tuberosum/genetics , Animals , Moths/pathogenicity , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/parasitology , Plant Tubers/genetics , Plant Tubers/growth & development , Plant Tubers/parasitology , Plants, Genetically Modified/growth & development , Solanum tuberosum/growth & development , Solanum tuberosum/parasitology , Starch/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...