Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Pharmaceutics ; 15(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37111706

ABSTRACT

BACKGROUND: Nucleic acid-based vaccines have been studied for the past four decades, but the approval of the first messenger RNA (mRNA) vaccines during the COVID-19 pandemic opened renewed perspectives for the development of similar vaccines against different infectious diseases. Presently available mRNA vaccines are based on non-replicative mRNA, which contains modified nucleosides encased in lipid vesicles, allowing for entry into the host cell cytoplasm, and reducing inflammatory reactions. An alternative immunization strategy employs self-amplifying mRNA (samRNA) derived from alphaviruses, but lacks viral structural genes. Once incorporated into ionizable lipid shells, these vaccines lead to enhanced gene expression, and lower mRNA doses are required to induce protective immune responses. In the present study, we tested a samRNA vaccine formulation based on the SP6 Venezuelan equine encephalitis (VEE) vector incorporated into cationic liposomes (dimethyldioctadecyl ammonium bromide and a cholesterol derivative). Three vaccines were generated that encoded two reporter genes (GFP and nanoLuc) and the Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5). METHODS: Transfection assays were performed using Vero and HEK293T cells, and the mice were immunized via the intradermal route using a tattooing device. RESULTS: The liposome-replicon complexes showed high transfection efficiencies with in vitro cultured cells, whereas tattooing immunization with GFP-encoding replicons demonstrated gene expression in mouse skin up to 48 h after immunization. Mice immunized with liposomal PfRH5-encoding RNA replicons elicited antibodies that recognized the native protein expressed in P. falciparum schizont extracts, and inhibited the growth of the parasite in vitro. CONCLUSION: Intradermal delivery of cationic lipid-encapsulated samRNA constructs is a feasible approach for developing future malaria vaccines.

2.
Sci Transl Med ; 15(686): eabn3464, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36867683

ABSTRACT

As mRNA vaccines have proved to be very successful in battling the coronavirus disease 2019 (COVID-19) pandemic, this new modality has attracted widespread interest for the development of potent vaccines against other infectious diseases and cancer. Cervical cancer caused by persistent human papillomavirus (HPV) infection is a major cause of cancer-related deaths in women, and the development of safe and effective therapeutic strategies is urgently needed. In the present study, we compared the performance of three different mRNA vaccine modalities to target tumors associated with HPV-16 infection in mice. We generated lipid nanoparticle (LNP)-encapsulated self-amplifying mRNA as well as unmodified and nucleoside-modified non-replicating mRNA vaccines encoding a chimeric protein derived from the fusion of the HPV-16 E7 oncoprotein and the herpes simplex virus type 1 glycoprotein D (gDE7). We demonstrated that single low-dose immunizations with any of the three gDE7 mRNA vaccines induced activation of E7-specific CD8+ T cells, generated memory T cell responses capable of preventing tumor relapses, and eradicated subcutaneous tumors at different growth stages. In addition, the gDE7 mRNA-LNP vaccines induced potent tumor protection in two different orthotopic mouse tumor models after administration of a single vaccine dose. Last, comparative studies demonstrated that all three gDE7 mRNA-LNP vaccines proved to be superior to gDE7 DNA and gDE7 recombinant protein vaccines. Collectively, we demonstrated the immunogenicity and therapeutic efficacy of three different mRNA vaccines in extensive comparative experiments. Our data support further evaluation of these mRNA vaccines in clinical trials.


Subject(s)
Cancer Vaccines , Neoplasms , Papillomavirus Infections , Papillomavirus Vaccines , Vaccines, DNA , Animals , Female , Mice , CD8-Positive T-Lymphocytes , Disease Models, Animal , Immunization , Mice, Inbred C57BL , Neoplasms/therapy , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/genetics , Recombinant Proteins , RNA, Messenger/genetics
3.
Antibiotics (Basel) ; 11(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36551488

ABSTRACT

BACKGROUND: Staphylococcus aureus is one of the most frequently major mastitis pathogens that cause clinical and subclinical mastitis worldwide. Current antimicrobial treatments are usually ineffective, and the commercially available vaccines lack proven effectiveness. The immunological response elicited by the recombinant S. aureus-cure-associated proteins phosphoglycerate kinase (PGK), enolase (ENO), and elongation factor-G (EF-G) in combination with the granulocyte-macrophage colony-stimulating factor (GM-CSF) DNA vaccination was studied in this work. METHODS: Here, twenty-three C57BL/6 mice were divided into four groups and vaccinated with: G1: none (control); G2: GM-CSF DNA plasmid DNA vaccine; G3: the combination of EF-G+ENO+PGK; and G4: the combinations of EF-G+ENO+PGK proteins plus GM-CSF plasmid DNA vaccine. After 44 days, spleen cells were collected for immunophenotyping and lymphocyte proliferation evaluation by flow cytometry upon S. aureus stimulus. RESULTS: Immunization with the three S. aureus recombinant proteins alone resulted in a higher percentage of IL-17A+ cells among CD8+ T central memory cells, as well as the highest intensity of IL-17A production by overall lymphocytes indicating that the contribution of the combined lymphocyte populations is crucial to sustaining a type 3 cell immunity environment. CONCLUSION: The immunization with three S. aureus-cure-associated recombinant proteins triggered type 3 immunity, which is a highly interesting path to pursue an effective bovine S. aureus mastitis vaccine.

4.
Front Immunol ; 13: 800606, 2022.
Article in English | MEDLINE | ID: mdl-35422806

ABSTRACT

Ultraviolet (UV) radiation is one of the most genotoxic, universal agents present in the environment. UVB (280-315 nm) radiation directly damages DNA, producing cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs). These photolesions interfere with essential cellular processes by blocking transcription and replication polymerases, and may induce skin inflammation, hyperplasia and cell death eventually contributing to skin aging, effects mediated mainly by keratinocytes. Additionally, these lesions may also induce mutations and thereby cause skin cancer. Photolesions are repaired by the Nucleotide Excision Repair (NER) pathway, responsible for repairing bulky DNA lesions. Both types of photolesions can also be repaired by distinct (CPD- or 6-4PP-) photolyases, enzymes that specifically repair their respective photolesion by directly splitting each dimer through a light-dependent process termed photoreactivation. However, as photolyases are absent in placental mammals, these organisms depend solely on NER for the repair of DNA UV lesions. However, the individual contribution of each UV dimer in the skin effects, as well as the role of keratinocytes has remained elusive. In this study, we show that in NER-deficient mice, the transgenic expression and photorepair of CPD-photolyase in basal keratinocytes completely inhibited UVB-induced epidermal thickness and cell proliferation. On the other hand, photorepair by 6-4PP-photolyase in keratinocytes reduced but did not abrogate these UV-induced effects. The photolyase mediated removal of either CPDs or 6-4PPs from basal keratinocytes in the skin also reduced UVB-induced apoptosis, ICAM-1 expression, and myeloperoxidase activation. These findings indicate that, in NER-deficient rodents, both types of photolesions have causal roles in UVB-induced epidermal cell proliferation, hyperplasia, cell death and inflammation. Furthermore, these findings also support the notion that basal keratinocytes, instead of other skin cells, are the major cellular mediators of these UVB-induced effects.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Animals , DNA , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Female , Hyperplasia , Inflammation , Keratinocytes/metabolism , Mammals/genetics , Mice , Placenta/metabolism , Pregnancy
5.
Antibiotics, v. 11, n. 12, 1831, dez. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4838

ABSTRACT

Background: Staphylococcus aureus is one of the most frequently major mastitis pathogens that cause clinical and subclinical mastitis worldwide. Current antimicrobial treatments are usually ineffective, and the commercially available vaccines lack proven effectiveness. The immunological response elicited by the recombinant S. aureus-cure-associated proteins phosphoglycerate kinase (PGK), enolase (ENO), and elongation factor-G (EF-G) in combination with the granulocyte-macrophage colony-stimulating factor (GM-CSF) DNA vaccination was studied in this work. Methods: Here, twenty-three C57BL/6 mice were divided into four groups and vaccinated with: G1: none (control); G2: GM-CSF DNA plasmid DNA vaccine; G3: the combination of EF-G+ENO+PGK; and G4: the combinations of EF-G+ENO+PGK proteins plus GM-CSF plasmid DNA vaccine. After 44 days, spleen cells were collected for immunophenotyping and lymphocyte proliferation evaluation by flow cytometry upon S. aureus stimulus. Results: Immunization with the three S. aureus recombinant proteins alone resulted in a higher percentage of IL-17A+ cells among CD8+ T central memory cells, as well as the highest intensity of IL-17A production by overall lymphocytes indicating that the contribution of the combined lymphocyte populations is crucial to sustaining a type 3 cell immunity environment. Conclusion: The immunization with three S. aureus-cure-associated recombinant proteins triggered type 3 immunity, which is a highly interesting path to pursue an effective bovine S. aureus mastitis vaccine.

6.
Vaccines (Basel) ; 9(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34452024

ABSTRACT

Staphylococcus aureus mastitis remains a major challenge for dairy farming. Here, 24 mice were immunized and divided into four groups: G1: control; G2: Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF) DNA vaccine; G3: F0F1 ATP synthase subunit α (SAS), succinyl-diaminopimelate (SDD), and cysteinyl-tRNA synthetase (CTS) recombinant proteins; and G4: SAS+SDD+CTS plus GM-CSF DNA vaccine. The lymphocyte subpopulations, and the intracellular interleukin-17A (IL-17A) and interferon-γ production in the draining lymph node cells were immunophenotyped by flow cytometry. The immunophenotyping and lymphocyte proliferation was determined in spleen cells cultured with and without S. aureus stimulus. Immunization with S. aureus recombinant proteins generated memory cells in draining lymph nodes. Immunization with the three recombinant proteins plus GM-CSF DNA led to an increase in the percentage of IL-17A+ cells among overall CD44+ (memory), T CD4+, CD4+ T CD44+ CD27-, γδ TCR, γδ TCR+ CD44+ CD27+, and TCRVγ4+ cells. Vaccination with S. aureus recombinant proteins associated with GM-CSF DNA vaccine downregulated TH2 immunity. Immunization with the three recombinant proteins plus the GM-CSF DNA led to a proliferation of overall memory T, CD4+, and CD4+ TEM cells upon S. aureus stimulus. This approach fostered type 3 immunity, suggesting the development of a protective immune response against S. aureus.

7.
Front Cell Infect Microbiol ; 11: 669088, 2021.
Article in English | MEDLINE | ID: mdl-34268135

ABSTRACT

The human malaria parasite Plasmodium falciparum expresses variant PfEMP1 proteins on the infected erythrocyte, which function as ligands for endothelial receptors in capillary vessels, leading to erythrocyte sequestration and severe malaria. The factors that orchestrate the mono-allelic expression of the 45-90 PfEMP1-encoding var genes within each parasite genome are still not fully identified. Here, we show that the transcription factor PfAP2-O influences the transcription of var genes. The temporary knockdown of PfAP2-O leads to a complete loss of var transcriptional memory and a decrease in cytoadherence in CD36 adherent parasites. AP2-O-knocked-down parasites exhibited also significant reductions in transmission through Anopheles mosquitoes. We propose that PfAP2-O is, beside its role in transmission stages, also one of the virulence gene transcriptional regulators and may therefore be exploited as an important target to disrupt severe malaria and block parasite transmission.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Animals , Erythrocytes , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Sexual Development , Transcription Factors/genetics , Transcription, Genetic , Virulence/genetics
8.
Nanomedicine ; 37: 102445, 2021 10.
Article in English | MEDLINE | ID: mdl-34303841

ABSTRACT

Chikungunya virus (CHIKV) is responsible for a self-limited illness that can evolve into long-lasting painful joint inflammation. In this study, we report a novel experimental CHIKV vaccine formulation of lipid nanoparticles loaded with a recombinant protein derived from the E2 structural protein. This antigen fragment, designated ∆E2.1, maintained the antigenicity of the native viral protein and was specifically recognized by antibodies induced in CHIKV-infected patients. The antigen has been formulated into nanoparticles consisting of nano-multilamellar vesicles (NMVs) combined with the adjuvant monophosphoryl lipid A (MPLA). The vaccine formulation demonstrated a depot effect, leading to controlled antigen release, and induced strong antibody responses significantly higher than in mice immunized with the purified protein combined with the adjuvant. More relevantly, E2-specific antibodies raised in mice immunized with ∆E2.1-loaded NMV-MPLA neutralized CHIKV under in vitro conditions. Taken together, the results demonstrated that the new nanoparticle-based vaccine formulation represents a promising approach for the development of effective anti-CHIKV vaccines.


Subject(s)
Chikungunya Fever/immunology , Chikungunya virus/immunology , Liposomes/immunology , Viral Envelope Proteins/genetics , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/drug effects , Antibodies, Viral/immunology , Chikungunya Fever/therapy , Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Humans , Liposomes/chemistry , Liposomes/pharmacology , Mice , Nanoparticles/chemistry , Viral Envelope Proteins/pharmacology , Viral Vaccines/immunology
9.
Acta Trop ; 215: 105805, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33387468

ABSTRACT

Amphotericin B (Amph-B) is an antifungal drug used intravenously for the treatment of leishmaniasis. Side-effects from Amph-B treatment can arise such as cardiac arrhythmia and renal dysfunctions, which will lead to discontinuation of treatment. Unfortunately, patients in endemic countries do not have access to alternative therapies. The objective of this study was to analyze the effects of Cobalt-60 gamma irradiation on crosslinking polymeric hydrogels (Hydg) and the incorporation of Amph-B into the gel as a controlled-release drug delivery alternative. Polyvinylpyrrolidone (PVP)/Amph-B solutions were irradiated with 15 kGy at 0 °C and 25 °C. The drug's stability was ascertained by UV-visible spectrometry, liquid chromatography/mass spectrometry and proton nuclear magnetic resonance. Irradiated Hydg/Amph-B achieved similar stability to the standard Amph-B solution and was enough to promote hydrogel crosslinking. In vitro trials were carried out to ensure Amph-B was still biologically active after irradiation. The results from flow cytometry and MTT assay show that Amph-B had an IC50 = 16.7 nM. A combination of Hydg at 1.324 gmL-1 and Amph-B at 25.1 nM for 24 h lead to the greatest inhibition of L. amazonensis promastigotes, and could be used as an alternative treatment method for cutaneous leishmaniosis.


Subject(s)
Amphotericin B/administration & dosage , Leishmaniasis, Cutaneous/drug therapy , Amphotericin B/chemistry , Delayed-Action Preparations , Drug Stability , Gamma Rays , Humans , Hydrogels/administration & dosage , Povidone/administration & dosage
10.
Vaccines, v. 9, n. 8, 899, ago. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3931

ABSTRACT

Staphylococcus aureus mastitis remains a major challenge for dairy farming. Here, 24 mice were immunized and divided into four groups: G1: control; G2: Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF) DNA vaccine; G3: F0F1 ATP synthase subunit α (SAS), succinyl-diaminopimelate (SDD), and cysteinyl-tRNA synthetase (CTS) recombinant proteins; and G4: SAS+SDD+CTS plus GM-CSF DNA vaccine. The lymphocyte subpopulations, and the intracellular interleukin-17A (IL-17A) and interferon-γ production in the draining lymph node cells were immunophenotyped by flow cytometry. The immunophenotyping and lymphocyte proliferation was determined in spleen cells cultured with and without S. aureus stimulus. Immunization with S. aureus recombinant proteins generated memory cells in draining lymph nodes. Immunization with the three recombinant proteins plus GM-CSF DNA led to an increase in the percentage of IL-17A+ cells among overall CD44+ (memory), T CD4+, CD4+ T CD44+ CD27−, γδ TCR, γδ TCR+ CD44+ CD27+, and TCRVγ4+ cells. Vaccination with S. aureus recombinant proteins associated with GM-CSF DNA vaccine downregulated TH2 immunity. Immunization with the three recombinant proteins plus the GM-CSF DNA led to a proliferation of overall memory T, CD4+, and CD4+ TEM cells upon S. aureus stimulus. This approach fostered type 3 immunity, suggesting the development of a protective immune response against S. aureus.

11.
Vaccines (Basel) ; 8(4)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092277

ABSTRACT

Vaccines are the primary means of controlling and preventing pandemics and outbreaks of pathogens such as bacteria, viruses, and parasites. However, a major drawback of naked DNA-based vaccines is their low immunogenicity and the amount of plasmid DNA necessary to elicit a response. Nano-sized liposomes can overcome this limitation, enhancing both nucleic acid stability and targeting to cells after administration. We tested two different DNA vaccines in cationic liposomes to improve the immunogenic properties. For this, we cloned the coding sequences of the Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5) either alone or fused with small the small hepatitis virus (HBV) envelope antigen (HBsAg) encoding sequences, potentially resulting in HBsAg particles displaying PfRH5 on their outside. Instead of invasive intraperitoneal or intramuscular immunization, we employed intradermal immunization by tattooing nano-encapsulated DNA. Mice were immunized with 10 µg encapsulated DNA encoding PfRH5 alone or in fusion with HBsAg and this elicited antibodies against schizont extracts (titer of 104). Importantly, only IgG from animals immunized with PfRH5-HBs demonstrated sustained IgG-mediated inhibition in in vitro growth assays showing 58% and 39% blocking activity after 24 and 48 h, respectively. Intradermal tattoo-vaccination of encapsulated PfRH5-HBsAg coding plasmid DNA is effective and superior compared with an unfused PfRH5-DNA vaccine, suggesting that the HBsAg fusion may be advantageous with other vaccine antigens.

12.
Environ Int ; 145: 106150, 2020 12.
Article in English | MEDLINE | ID: mdl-33039876

ABSTRACT

Air pollution represents a considerable threat to health worldwide. The São Paulo Metropolitan area, in Brazil, has a unique composition of atmospheric pollutants with a population of nearly 20 million people and 9 million passenger cars. It is long known that exposure to particulate matter less than 2.5 µm (PM2.5) can cause various health effects such as DNA damage. One of the most versatile defense mechanisms against the accumulation of DNA damage is the nucleotide excision repair (NER), which includes XPC protein. However, the mechanisms by which NER protects against adverse health effects related to air pollution are largely unknown. We hypothesized that reduction of XPC activity may contribute to inflammation response, oxidative stress and DNA damage after PM2.5 exposure. To address these important questions, XPC knockout and wild type mice were exposed to PM2.5 using the Harvard Ambient Particle concentrator. Results from one-single exposure have shown a significant increase in the levels of anti-ICAM, IL-1ß, and TNF-α in the polluted group when compared to the filtered air group. Continued chronic PM2.5 exposure increased levels of carbonylated proteins, especially in the lung of XPC mice, probably as a consequence of oxidative stress. As a response to DNA damage, XPC mice lungs exhibit increased γ-H2AX, followed by severe atypical hyperplasia. Emissions from vehicles are composed of hazardous substances, with polycyclic aromatic hydrocarbons (PAHs) and metals being most frequently cited as the major contributors to negative health impacts. This analysis showed that benzo[b]fluoranthene, 2-nitrofluorene and 9,10-anthraquinone were the most abundant PAHs and derivatives. Taken together, these findings demonstrate the participation of XPC protein, and NER pathway, in the protection of mice against the carcinogenic potential of air pollution. This implicates that DNA is damaged directly (forming adducts) or indirectly (Reactive Oxygen Species) by the various compounds detected in urban PM2.5.


Subject(s)
Air Pollutants , Air Pollution , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Animals , Brazil , DNA Damage , DNA Repair , Inflammation/chemically induced , Mice , Oxidative Stress , Particulate Matter/analysis , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis
13.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200032, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32788917

ABSTRACT

BACKGROUND: Liposomes are highly useful carriers for delivering drugs or antigens. The association of glycosylphosphatidylinositol (GPI)-anchored proteins to liposomes potentially enhances the immunogenic effect of vaccine antigens by increasing their surface concentration. Furthermore, the introduction of a universal immunoglobulin-binding domain can make liposomes targetable to virtually any desired receptor for which antibodies exist. METHODS: We developed a system for the production of recombinant proteins with GPI anchors and histidine tags and Strep-tags for simplified purification from cells. This system was applied to i) the green fluorescent protein (GFP) as a reporter, ii) the promising Plasmodium falciparum vaccine antigen PfRH5 and iii) a doubled immunoglobulin Fc-binding domain termed ZZ from protein A of Staphylococcus aureus. As the GPI-attachment domain, the C-terminus of murine CD14 was used. After the recovery of these three recombinant proteins from Chinese hamster ovary (CHO) cells and association with liposomes, their vaccine potential and ability to target the CD4 receptor on lymphocytes in ex vivo conditions were tested. RESULTS: Upon immunization in mice, the PfRH5-GPI-loaded liposomes generated antibody titers of 103 to 104, and showed a 45% inhibitory effect on in vitro growth at an IgG concentration of 600 µg/mL in P. falciparum cultures. Using GPI-anchored ZZ to couple anti-CD4 antibodies to liposomes, we created immunoliposomes with a binding efficiency of 75% to CD4+ cells in splenocytes and minimal off-target binding. CONCLUSIONS: Proteins are very effectively associated with liposomes via a GPI-anchor to form proteoliposome particles and these are useful for a variety of applications including vaccines and antibody-mediated targeting of liposomes. Importantly, the CHO-cell and GPI-tagged produced PfRH5 elicited invasion-blocking antibodies qualitatively comparable to other approaches.

14.
J. venom. anim. toxins incl. trop. dis ; 26: e20200032, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1135160

ABSTRACT

Liposomes are highly useful carriers for delivering drugs or antigens. The association of glycosylphosphatidylinositol (GPI)-anchored proteins to liposomes potentially enhances the immunogenic effect of vaccine antigens by increasing their surface concentration. Furthermore, the introduction of a universal immunoglobulin-binding domain can make liposomes targetable to virtually any desired receptor for which antibodies exist. Methods: We developed a system for the production of recombinant proteins with GPI anchors and histidine tags and Strep-tags for simplified purification from cells. This system was applied to i) the green fluorescent protein (GFP) as a reporter, ii) the promising Plasmodium falciparum vaccine antigen PfRH5 and iii) a doubled immunoglobulin Fc-binding domain termed ZZ from protein A of Staphylococcus aureus. As the GPI-attachment domain, the C-terminus of murine CD14 was used. After the recovery of these three recombinant proteins from Chinese hamster ovary (CHO) cells and association with liposomes, their vaccine potential and ability to target the CD4 receptor on lymphocytes in ex vivo conditions were tested. Results: Upon immunization in mice, the PfRH5-GPI-loaded liposomes generated antibody titers of 103 to 104, and showed a 45% inhibitory effect on in vitro growth at an IgG concentration of 600 µg/mL in P. falciparum cultures. Using GPI-anchored ZZ to couple anti-CD4 antibodies to liposomes, we created immunoliposomes with a binding efficiency of 75% to CD4+ cells in splenocytes and minimal off-target binding. Conclusions: Proteins are very effectively associated with liposomes via a GPI-anchor to form proteoliposome particles and these are useful for a variety of applications including vaccines and antibody-mediated targeting of liposomes. Importantly, the CHO-cell and GPI-tagged produced PfRH5 elicited invasion-blocking antibodies qualitatively comparable to other approaches.(AU)


Subject(s)
Plasmodium falciparum , Vaccines , Glycosylphosphatidylinositols , Liposomes , Antigens
15.
Nanomedicine ; 22: 102099, 2019 11.
Article in English | MEDLINE | ID: mdl-31648039

ABSTRACT

Lipid particles for drug delivery can be modified to create multilayer vesicles with higher stability and improved cargo interaction. Here, we used lipids capable of forming hydrogen bonds instead of covalent bonds and designed stable vesicles-inside-vesicles with a high capacity of entrapping antimalarial drugs such as chloroquine (hydrophilic) and Artemisinin (lipophilic). In vitro treatment of the drug-sensitive P. falciparum strain NF54 showed that encapsulated drugs resulted in 72% and 60% lower IC50 values for each drug, respectively. Fluorochrome-labeling of a cargo-peptide or of membrane-resident lipids indicated that vesicles interacted more specifically with parasite-infected erythrocytes than with normal red blood cells. Accordingly, vesicle-confined chloroquine was able to elicit a stronger antiparasitic effect than free chloroquine in a lethal murine model of infection. Being permissive not only to small molecules but also to larger peptides, hydrogen-bond linked multilamellar liposomes are a very promising approach for enhanced drug delivery.


Subject(s)
Antimalarials/pharmacology , Nanoparticles/chemistry , Animals , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Artemisinins/pharmacology , Chloroquine/pharmacology , Cross-Linking Reagents/chemistry , Drug Delivery Systems , Hydrogen Bonding , Liposomes , Malaria, Falciparum/drug therapy , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/ultrastructure , Particle Size , Plasmodium falciparum/drug effects , Treatment Outcome
16.
PLoS One ; 14(7): e0219629, 2019.
Article in English | MEDLINE | ID: mdl-31344067

ABSTRACT

BACKGROUND: Plasmodium malariae is the third most prevalent human malaria-causing species and has a patchy, but ample distribution in the world. Humans can host the parasite for years without presenting significant symptoms, turning its diagnosis and control into a difficult task. Here, we investigated the immunogenicity of recombinant proteins of P. malariae MSP1. METHODS: Five regions of PmMSP1 were expressed in Escherichia coli as GST-fusion proteins and immunized in BALB/c mice. The specificity, subtyping, and affinity of raised antibodies were evaluated by enzyme-linked immunosorbent assays. Cellular immune responses were analyzed by lymphoproliferation assays and cytokine levels produced by splenocytes were detected by cytometry. RESULTS: We found that N-terminal, central regions, and PmMSP119 are strongly immunogenic in mice. After three doses, the induced immune responses remained high for 70 days. While antibodies induced after immunization with N-terminal and central regions showed similar affinities to the target antigens, affinities of IgG against PmMSP119 were higher. All proteins induced similar antibody subclass patterns (predominantly IgG1, IgG2a, and IgG2b), characterizing a mixed Th1/Th2 response. Further, autologous stimulation of splenocytes from immunized mice led to the secretion of IL2 and IL4, independently of the antigen used. Importantly, IgG from P. malariae-exposed individuals reacted against PmMSP1 recombinant proteins with a high specificity. On the other hand, sera from P. vivax or P. falciparum-infected individuals did not react at all against recombinant PmMSP1 proteins. CONCLUSION: Recombinant PmMSP1 proteins are very useful diagnostic markers of P. malariae in epidemiological studies or in the differential diagnosis of malaria caused by this species. Immunization with recombinant PmMSP1 proteins resulted in a significant humoral immune response, which may turn them potential component candidates for a vaccine against P. malariae.


Subject(s)
Malaria/diagnosis , Malaria/immunology , Merozoite Surface Protein 1/immunology , Plasmodium malariae/immunology , Recombinant Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/blood , Cell Proliferation , Cytokines/metabolism , Humans , Immunization , Immunoglobulin G/immunology , Interleukin-4/metabolism , Malaria/blood , Malaria/parasitology , Merozoite Surface Protein 1/chemistry , Mice, Inbred BALB C , Spleen/metabolism
18.
Sci Rep ; 8(1): 1547, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367729

ABSTRACT

Increased resistance to the first-line treatment against P. falciparum malaria, artemisinin-based combination therapies, has been reported. Here, we tested the effect of crude ethanolic extract of the fungus Trichoderma stromaticum (Ext-Ts) on the growth of P. falciparum NF54 in infected human red blood cells (ihRBCs) and its anti-malarial and anti-inflammatory properties in a mouse model of experimental cerebral malaria. For this purpose, ihRBCs were treated with Ext-Ts and analysed for parasitaemia; C57BL/6 mice were infected with P. berghei ANKA (PbA), treated daily with Ext-Ts, and clinical, biochemical, histological and immunological features of the disease were monitored. It was observed that Ext-Ts presented a dose-dependent ability to control P. falciparum in ihRBCs. In addition, it was demonstrated that Ext-Ts treatment of PbA-infected mice was able to increase survival, prevent neurological signs and decrease parasitaemia at the beginning of infection. These effects were associated with systemically decreased levels of lipids and IFN-γ, ICAM-1, VCAM-1 and CCR5 cerebral expression, preserving blood brain barrier integrity and attenuating the inflammatory lesions in the brain, liver and lungs. These results suggest that Ext-Ts could be a source of immunomodulatory and antimalarial compounds that could improve the treatment of cerebral malaria.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimalarials/pharmacology , Complex Mixtures/pharmacology , Malaria, Cerebral/drug therapy , Trichoderma/chemistry , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Antimalarials/administration & dosage , Antimalarials/isolation & purification , Brain/parasitology , Brain/pathology , Complex Mixtures/administration & dosage , Complex Mixtures/isolation & purification , Disease Models, Animal , Dose-Response Relationship, Drug , Erythrocytes/parasitology , Histocytochemistry , Humans , Immunohistochemistry , Malaria, Cerebral/parasitology , Malaria, Cerebral/pathology , Mice, Inbred C57BL , Parasitemia/drug therapy , Plasmodium falciparum/drug effects , Survival Analysis , Treatment Outcome
19.
Sci Rep ; 8(1): 1038, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348637

ABSTRACT

Malaria, caused by parasites of the genus Plasmodium, leads to over half a million deaths per year, 90% of which are caused by Plasmodium falciparum. P. vivax usually causes milder forms of malaria; however, P. vivax can remain dormant in the livers of infected patients for weeks or years before re-emerging in a new bout of the disease. The only drugs available that target all stages of the parasite can lead to severe side effects in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency; hence, there is an urgent need to develop new drugs active against blood and liver stages of the parasite. Different groups have demonstrated that triclosan, a common antibacterial agent, targets the Plasmodium liver enzyme enoyl reductase. Here, we provide 4 independent lines of evidence demonstrating that triclosan specifically targets both wild-type and pyrimethamine-resistant P. falciparum and P. vivax dihydrofolate reductases, classic targets for the blood stage of the parasite. This makes triclosan an exciting candidate for further development as a dual specificity antimalarial, which could target both liver and blood stages of the parasite.


Subject(s)
Antimalarials/pharmacology , Folic Acid Antagonists/pharmacology , Plasmodium/drug effects , Plasmodium/enzymology , Tetrahydrofolate Dehydrogenase/metabolism , Triclosan/pharmacology , Antimalarials/chemistry , Binding Sites , Enzyme Activation/drug effects , Folic Acid Antagonists/chemistry , Models, Molecular , Molecular Conformation , Protein Binding , Structure-Activity Relationship , Tetrahydrofolate Dehydrogenase/chemistry , Triclosan/chemistry
20.
Protein Expr Purif ; 142: 75-80, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28988145

ABSTRACT

The role of Alpha folate receptors (FRα) in folate metabolism and cancer development has been extensively studied. The reason for this is not only associated to its direct relation to disease development but also to its potential use as a highly sensitive and specific biomarker for cancers therapies. Over the recent years, the crystal structures of human FRα complexed with different ligands were described relying on an expensive and time-consuming production process. Here, we constructed an efficient system for the expression and purification of a human FRα in E. coli. Unlike a conventional expression method we used a specific protein fusion expressing the target protein together with a trigger factor (TF). This factor is a chaperone from E. coli that assists the correct folding of newly synthesized polypeptide chains. The activity of rTFFRα was comparable to glycosylphosphatidylinositol (GPI) anchored proteins extracted from HeLa tumor cells. Our work demonstrates a straightforward and versatile approach for the production of active human FRα by heterologous expression; this approach further enhances the development of inhibition studies and biotechnological applications. The purified product was then conjugated to liposomes, obtaining a 35% higher signal from densitometry measurement on the immunoblotting assay in the contruct containing the Ni-NTA tag, as a mimesis of an exosome, which is of vital importance to nanotherapeutic techniques associated to treatment and diagnosis of tumors.


Subject(s)
Escherichia coli Proteins/genetics , Folate Receptor 1/genetics , Peptidylprolyl Isomerase/genetics , Plasmids/chemistry , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Folate Receptor 1/metabolism , Gene Expression , HeLa Cells , Histidine/genetics , Histidine/metabolism , Humans , Kinetics , Liposomes/chemistry , Liposomes/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Peptidylprolyl Isomerase/metabolism , Plasmids/metabolism , Proteolysis , Recombinant Fusion Proteins/metabolism , Tetrahydrofolates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...