Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 30(12): 21854-21865, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224897

ABSTRACT

We propose a new DNA sequencing concept based on nonradiative Förster resonant energy transfer (FRET) from a donor quantum dot (QD) to an acceptor molecule. The FRET mechanism combined with the nanopore-based DNA translocation is suggested as a novel concept for sequencing DNA molecules. A recently-developed hybrid quantum/classical method is employed, which uses time-dependent density functional theory and quasistatic finite difference time domain calculations. Due to the significant absorbance of DNA bases for photon energies higher than 4 eV, biocompatibility, and stability, we use Zinc-Oxide (ZnO) QD as a donor in the FRET mechanism. The most sensitivity for the proposed method to DNA is achieved for the Hoechst fluorescent-dye acceptor and 1 nm ZnO-QD. Results show that the insertion of each type of DNA nucleobases between the donor and acceptor changes the frequency of the emitted light from the acceptor molecule between 0.25 to 1.6 eV. The noise analysis shows that the method can determine any unknown DNA nucleobases if the signal-to-noise ratio is larger than 5 dB. The proposed concept and excellent results shed light on a new promising class of DNA sequencers.


Subject(s)
Quantum Dots , Zinc Oxide , DNA , Fluorescence Resonance Energy Transfer/methods , Sequence Analysis, DNA , Zinc
2.
Opt Lett ; 47(1): 194-197, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34951915

ABSTRACT

We propose a novel, to the best of our knowledge, plasmonic-based methodology for the purpose of fast DNA sequencing. The interband surface plasmon resonance and field-enhancement properties of graphene nanopore in the presence of the DNA nucleobases are investigated using a hybrid quantum/classical method (HQCM), which employs time-dependent density functional theory and a quasistatic finite difference time domain approach. In the strong plasmonic-molecular coupling regime where the plasmon and DNA absorption frequencies are degenerated, the optical response of DNA molecule in the vicinity of the nanopore is enhanced. In contrast, when the plasmon and nucleobases resonances are detuned the distinct peaks and broadening of the molecular resonances represent the inherent properties of the nucleobase. Due to the different optical properties of DNA nucleobases in the ultraviolet (UV) region of light, the signal corresponding to the replacement of nucleobases in a DNA block can be determined by considering the differential absorbance. Results show the promising capability of the present mechanism for practical DNA sequencing.


Subject(s)
Graphite , Nanopores , DNA , Sequence Analysis, DNA , Surface Plasmon Resonance
3.
Sci Rep ; 9(1): 6230, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30996229

ABSTRACT

We propose a new DNA sensing mechanism based on optical properties of graphene oxide (GO) and molybdenum disulphide (MoS2) nanopores. In this method, GO and MoS2 is utilized as quantum dot (QD) nanopore and DNA molecule translocate through the nanopore. A recently-developed hybrid quantum/classical method (HQCM) is employed which uses time-dependent density functional theory and quasi-static finite difference time domain approach. Due to good biocompatibility, stability and excitation wavelength dependent emission behavior of GO and MoS2 we use them as nanopore materials. The absorption and emission peaks wavelengths of GO and MoS2 nanopores are investigated in the presence of DNA nucleobases. The maximum sensitivity of the proposed method to DNA is achieved for the 2-nm GO nanopore. Results show that insertion of DNA nucleobases in the nanopore shifts the wavelength of the emitted light from GO or MoS2 nanopore up to 130 nm. The maximum value of the relative shift between two different nucleobases is achieved by the shift between cytosine (C) and thymine (T) nucleobases, ~111 nm for 2-nm GO nanopore. Results show that the proposed mechanism has a superior capability to be used in future DNA sequencers.


Subject(s)
Cytosine , DNA/genetics , Disulfides , Graphite , Molybdenum , Nanopores , Sequence Analysis, DNA/methods , Thymine , Absorption, Physicochemical , Base Sequence , Computational Biology/methods , DNA/chemistry , Light , Quantum Dots , Water
4.
Opt Lett ; 41(18): 4229-32, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27628364

ABSTRACT

We propose novel nano-plasmonic-based structures for rapid sequencing of DNA molecules. The optical properties of DNA nucleotides have notable differences in the ultraviolet (UV) region of light. Using nanopore, bowtie, and bowtie-nanopore compound structures, probable application of the surface plasmon resonance (SPR) in DNA sequencing is investigated by employing the discrete dipole approximation method. The effects of different materials like chromium (Cr), aluminum (Al), rhodium (Rh), and graphene (Gr) are studied. We show that for Cr/Al/Gr/Rh, the nucleotide presented shifts the SPR spectra for the nanopore 1/29/5/34 to 14/39/15/67 nm, bowtie 8/2/49/38 to 31/20/79/55 nm, and bowtie-nanopore compound 25/77/5/16 to 80/80/22/39 nm. The Cr-based compound structure shows excellent sensitivity and selectivity which can make it a promising methodology for DNA sequencing.


Subject(s)
Nanopores , Sequence Analysis, DNA , Surface Plasmon Resonance/methods , Base Sequence , DNA , Graphite/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL