Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 21(2): 831-844, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38174896

ABSTRACT

Tumor spheroids are promising three-dimensional (3D) in vitro tumor models for the evaluation of drug delivery methods. The design of noninvasive and targeted drug methods is required to improve the intratumoral bioavailability of chemotherapeutic drugs and reduce their adverse off-target effects. Among such methods, microbubble-assisted ultrasound (MB-assisted US) is an innovative modality for noninvasive targeted drug delivery. The aim of the present study is to evaluate the efficacy of this US modality for the delivery of bleomycin, doxorubicin, and irinotecan in colorectal cancer (CRC) spheroids. MB-assisted US permeabilized the CRC spheroids to propidium iodide, which was used as a drug model without affecting their growth and viability. Histological analysis and electron microscopy revealed that MB-assisted US affected only the peripheral layer of the CRC spheroids. The acoustically mediated bleomycin delivery induced a significant decrease in CRC spheroid growth in comparison to spheroids treated with bleomycin alone. However, this US modality did not improve the therapeutic efficacy of doxorubicin and irinotecan on CRC spheroids. In conclusion, this study demonstrates that tumor spheroids are a relevant approach to evaluate the efficacy of MB-assisted US for the delivery of chemotherapeutics.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Irinotecan , Microbubbles , Doxorubicin/pharmacology , Bleomycin , Spheroids, Cellular , Cell Line, Tumor
2.
Pharmaceutics ; 13(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34683859

ABSTRACT

Stroke is the second leading cause of death worldwide. Existing therapies present limitations, and other therapeutic alternatives are sought, such as sonothrombolysis with microbubbles (STL). The aim of this study was to evaluate the change induced by STL with or without recombinant tissue-type plasminogen activator (rtPA) on the acoustic and elastic properties of the blood clot by measuring its sound speed (SoS) and shear wave speed (SWS) with high frequency ultrasound and ultrafast imaging, respectively. An in-vitro setup was used and human blood clots were submitted to a combination of microbubbles and rtPA. The results demonstrate that STL induces a raise of SoS in the blood clot, specifically when combined with rtPA (p < 0.05). Moreover, the combination of rtPA and STL induces a hardening of the clot in comparison to rtPA alone (p < 0.05). This is the first assessment of acoustoelastic properties of blood clots during STL. The combination of rtPA and STL induce SoS and hardening of the clot, which is known to impair the penetration of thrombolytic drugs and their efficacy.

3.
Sci Rep ; 7(1): 6211, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740129

ABSTRACT

Thrombosis is a major cause of several diseases, i.e. myocardial infarction, cerebral stroke and pulmonary embolism. Thrombolytic therapies are required to induce fast and efficient recanalization of occluded vessels. To evaluate the in vitro efficacy of these thrombolytic strategies, measuring clot dissolution is essential. This study aimed to evaluate and validate high resolution ultrasound as a tool to assess the exact volume of clots in 3D and in real time during in vitro thrombolytic drug testing. This new method was validated by measuring the effects of concentration range of recombinant tissue type plasminogen activator on a blood clot during complete occlusion or 70% stenosis of a vessel. This study shows that high resolution ultrasound imaging allows for a real-time assessment of the 3D volume of a blood clot with negligible inter- and intra-operator variabilities. The conclusions drawn from this study demonstrate the promising potential of high resolution ultrasound imaging for the in vitro assessment of new thrombolytic drugs.


Subject(s)
Fibrinolytic Agents/administration & dosage , Mechanical Thrombolysis/methods , Recombinant Proteins/administration & dosage , Thrombosis/diagnostic imaging , Tissue Plasminogen Activator/administration & dosage , Ultrasonography/methods , Healthy Volunteers , Humans , In Vitro Techniques , Thrombosis/drug therapy
4.
Ultrasound Med Biol ; 43(5): 1004-1015, 2017 05.
Article in English | MEDLINE | ID: mdl-28214036

ABSTRACT

Subharmonic signals backscattered from gas-filled lipid-shelled microbubbles have generated significant research interest because they can improve the detection and sensitivity of contrast-enhanced ultrasound imaging. However, the emission of subharmonic signals is strongly characterized by a temporal dependence, the origins of which have not been sufficiently elucidated. The features that influence subharmonic emissions need to be identified not only to better develop next-generation microbubble contrast agents, but also to develop more efficient subharmonic imaging (SHI) modes and therapeutic strategies. We examined the effect of microbubble filling gas on subharmonic emissions. Phospholipid shelled-microbubbles with different gaseous compositions such as sulfur hexafluoride (SF6), octafluoropropane (C3F8) or decafluorobutane (C4F10), nitrogen (N2)/C4F10 or air were insonated using a driving frequency of 10 MHz and peak negative pressure of 450 kPa, and their acoustic responses were tracked by monitoring both second harmonic and subharmonic emissions. Microbubbles were first acoustically characterized with their original gas and then re-characterized after substitution of the original gas with air, SF6 or C4F10. A measureable change in intensity of the subharmonic emissions with a 20- to 40-min delayed onset and increasing subharmonic emissions of the order 12-18 dB was recorded for microbubbles filled with C4F10. Substitution of C4F10 with air eliminated the earlier observed delay in subharmonic emissions. Significantly, substitution of SF6 for C4F10 successfully triggered a delay in the subharmonic emissions of the resultant agents, whereas substitution of C4F10 for SF6 eliminated the earlier observed suppression of subharmonic emissions, clearly suggesting that the type of filling gas contained in the microbubble agent influences subharmonic emissions in a time-dependent manner. Because our agents were dispersed in air-stabilized phosphate-buffered saline, these results suggest that the diffusivity of the gas from the agent to the surrounding medium is correlated with the time-dependent evolution of subharmonic emissions.


Subject(s)
Contrast Media , Gases , Phospholipids , Ultrasonic Waves , Microbubbles
5.
Expert Opin Drug Deliv ; 14(9): 1031-1043, 2017 09.
Article in English | MEDLINE | ID: mdl-27892760

ABSTRACT

INTRODUCTION: Recent developments in ultrasound imaging and ultrasound contrast agents (UCAs) improved diagnostic confidence in echography and set into motion their combined use as a tool for drug delivery and therapeutic monitoring. Non-invasive, precise and targeted delivery of drug molecules to pathological tissues by employing different mechanisms of drug release is becoming feasible. Areas covered: We sought to describe: the nature and features of UCAs; outline current contrast-specific imaging modes; before describing a variety of strategies for using ultrasound and microbubbles as a drug delivery system. Our expert opinion focusses on results and prospects of using ultrasound and microbubbles as a dual modality for drug delivery and therapeutic monitoring. Expert opinion: Today, ultrasound and microbubbles present a realistic prospect as drug delivery tools that have been demonstrated in a variety of animal models and clinical indications. Besides delivering drugs, ultrasound and microbubbles have demonstrated added value through therapeutic monitoring and assessment. Successful evaluation of the sonoporation mechanism(s), ultrasound parameters, drug type and dose will need to be addressed before translating this technology for clinic use. Ultimately, the development of a strategy for monitoring targeted delivery and its implementation in clinical practice would advance therapeutic treatment to a new qualitative level.


Subject(s)
Drug Delivery Systems , Drug Monitoring/methods , Microbubbles , Ultrasonography/methods , Animals , Contrast Media , Humans
6.
Article in English | MEDLINE | ID: mdl-27187953

ABSTRACT

Capacitive micromachined ultrasonic transducers (cMUTs) provide promising ultrasonic technology that could become an alternative to piezoelectric probes for medical applications. cMUTs could be very valuable for contrast-enhanced ultrasound imaging based on higher harmonics detection. However, their use is restricted by the intrinsic nonlinearity of the cMUT transmitters themselves, because it is difficult to distinguish between the nonlinearity of the microbubbles and the nonlinearity arising from the emitting transducer. A number of approaches have been proposed in recent years to cancel the nonlinearity of cMUTs. However, these techniques have limitations in terms of implementation with current ultrasound scanner electronics. The solution to be comparable with classical methods should not need precharacterization of the probe or changing the bias voltage (amplitude or polarity) but does need good sensitivity and a high frame rate to avoid motion artifacts. We propose here proof of a concept of an adapted amplitude modulation sequence with cMUT where transmit elements operate alternately. We show that this method, which is currently used with piezoelectric probes, is fully applicable to cMUT probes and the intrinsic nonlinearity of the transmitter is no longer an issue.

7.
J Acoust Soc Am ; 137(2): EL144-50, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25698042

ABSTRACT

An experimental method for characterizing microbubbles' oscillations is presented. With a Dual Frequency ultrasound excitation method, both relative and absolute microbubble size variations can be measured. Using the same experimental setup, a simple signal processing step applied to both the amplitude and the frequency modulations yields a two-fold picture of microbubbles' dynamics. In addition, assuming the occurrence of small radial oscillations, the equilibrium radius of the microbubbles can be accurately estimated.

SELECTION OF CITATIONS
SEARCH DETAIL
...