Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10905, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740939

ABSTRACT

Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.


Subject(s)
Epithelial Cells , NF-E2-Related Factor 2 , Oxidative Stress , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Mice , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Aldehydes/metabolism , Glutathione/metabolism , Cell Survival/drug effects , Cell Line , CRISPR-Cas Systems , Lipid Peroxidation/drug effects
2.
PLoS One ; 19(4): e0302932, 2024.
Article in English | MEDLINE | ID: mdl-38669265

ABSTRACT

INTRODUCTION: Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS: Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 µM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS: First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS: During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.


Subject(s)
Aldehydes , Bone Morphogenetic Protein 4 , Coculture Techniques , Colon , Epithelial-Mesenchymal Transition , Fibroblasts , Animals , Colon/cytology , Colon/drug effects , Colon/metabolism , Mice , Fibroblasts/metabolism , Fibroblasts/drug effects , Bone Morphogenetic Protein 4/metabolism , Aldehydes/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Phenotype , Cell Transformation, Neoplastic/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/cytology
3.
NPJ Sci Food ; 7(1): 53, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37805637

ABSTRACT

Epidemiological and experimental evidence indicated that processed meat consumption is associated with colorectal cancer risks. Several studies suggest the involvement of nitrite or nitrate additives via N-nitroso-compound formation (NOCs). Compared to the reference level (120 mg/kg of ham), sodium nitrite removal and reduction (90 mg/kg) similarly decreased preneoplastic lesions in F344 rats, but only reduction had an inhibitory effect on Listeria monocytogenes growth comparable to that obtained using the reference nitrite level and an effective lipid peroxidation control. Among the three nitrite salt alternatives tested, none of them led to a significant gain when compared to the reference level: vegetable stock, due to nitrate presence, was very similar to this reference nitrite level, yeast extract induced a strong luminal peroxidation and no decrease in preneoplastic lesions in rats despite the absence of NOCs, and polyphenol rich extract induced the clearest downward trend on preneoplastic lesions in rats but the concomitant presence of nitrosyl iron in feces. Except the vegetable stock, other alternatives were less efficient than sodium nitrite in reducing L. monocytogenes growth.

4.
Mol Nutr Food Res ; 67(5): e2200432, 2023 03.
Article in English | MEDLINE | ID: mdl-36647294

ABSTRACT

SCOPE: High red and processed meat consumption is associated with several adverse outcomes such as colorectal cancer and overall global mortality. However, the underlying mechanisms remain debated and need to be elucidated. METHODS AND RESULTS: Urinary untargeted Liquid Chromatography-Mass Spectrometry (LC-MS) metabolomics data from 240 subjects from the French cohort NutriNet-Santé are analyzed. Individuals are matched and divided into three groups according to their consumption of red and processed meat: high red and processed meat consumers, non-red and processed meat consumers, and at random group. Results are supported by a preclinical experiment where rats are fed either a high red meat or a control diet. Microbiota derived metabolites, in particular indoxyl sulfate and cinnamoylglycine, are found impacted by the high red meat diet in both studies, suggesting a modification of microbiota by the high red/processed meat diet. Rat microbiota sequencing analysis strengthens this observation. Although not evidenced in the human study, rat mercapturic acid profile concomitantly reveals an increased lipid peroxidation induced by high red meat diet. CONCLUSION: Novel microbiota metabolites are identified as red meat consumption potential biomarkers, suggesting a deleterious effect, which could partly explain the adverse effects associated with high red and processed meat consumption.


Subject(s)
Microbiota , Red Meat , Humans , Rats , Animals , Diet , Meat , Metabolome
5.
PLoS One ; 17(8): e0273858, 2022.
Article in English | MEDLINE | ID: mdl-36040985

ABSTRACT

Continuous and rapid renewal of the colonic epithelium is crucial to resist the plethora of luminal deleterious agents. Subepithelial fibroblasts contribute to this turnover by regulating epithelial proliferation and differentiation. However, when intestinal homeostasis is disturbed, fibroblasts can acquire an activated phenotype and play a major role in the progression of intestinal pathologies. To evaluate the involvement of fibroblasts in the regulation of colonocytes under homeostatic or pathological conditions, we established resting and activated conditionally immortalized fibroblast cell lines (nF and mF) from mouse colonic mucosa. We then studied the epithelial-mesenchymal interactions between activated or resting fibroblasts and the normal mouse colonocytes (Co) using a co-culture model. Both fibroblastic cell lines were characterized by RT-qPCR, western blot and immunofluorescence assay. Our results showed that nF and mF cells were positive for fibroblastic markers such as vimentin and collagen 1, and negative for cytokeratin 18 and E-cadherin, attesting to their fibroblastic type. They also expressed proteins characteristic of the epithelial stem cell niche such as Grem1, CD90 or Wnt5a. Only rare nF fibroblasts were positive for α-SMA, whereas all mF fibroblasts strongly expressed this marker, supporting that mF cells were activated fibroblasts/myofibroblasts. In coculture, nF fibroblasts and Co cells strongly interacted via paracrine exchanges resulting in BMP4 production in nF fibroblasts, activation of BMP signaling in Co colonocytes, and decreased growth of colonocytes. Activated-type mF fibroblasts did not exert the same effects on Co cells, allowing colonocytes free to proliferate. In conclusion, these two colonic fibroblast lines, associated with Co cells in coculture, should allow to better understand the role of mesenchymal cells in the preservation of homeostasis and the development of intestinal pathologies.


Subject(s)
Colon , Fibroblasts , Animals , Cell Line , Cells, Cultured , Coculture Techniques , Fibroblasts/metabolism , Mice
6.
Food Chem ; 371: 131094, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34583182

ABSTRACT

Tunas are among the most traded and valued fish species, and good traceability of tuna products in the world market is needed to protect both consumers and tuna stocks. To that purpose, high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy combined with multivariate data analysis was used to investigate the molecular components of the aqueous extract of white and red muscles in three species of wild tropical tuna species, namely yellowfin tuna (Thunnus albacares), skipjack tuna (Katsuwonus pelamis) and bigeye tuna (T. obesus). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) applied to the processed 1H NMR spectra showed significant separation according to the species and size category (i.e., small tunas < 80 cm fork length vs large tunas > 80 cm fork length), the storage conditions on-board the purse-seine vessels (i.e., brine- vs deep-freezing), and the geographical origin (i.e., where the tuna was caught: Mozambique Channel vs western-central Indian Ocean). The major groups of metabolites responsible for differentiation in PLS-DA score plots were the dipeptides (anserine, carnosine) and organic acids (lactate, creatine/phosphocreatine) in the white muscle, and the free amino acids, essential nutrients (choline and its derivatives, phosphatidylethanolamine), dipeptides and organic acids in the red muscle. Our results showed that NMR-based metabolomics is a powerful tool to efficiently discriminate specific profiles among wild tuna species, raw muscle tissues, fish storage conditions and tuna geographical origin.


Subject(s)
Fishes , Tuna , Animals , Indian Ocean , Magnetic Resonance Spectroscopy , Metabolomics
7.
Eur J Nutr ; 60(4): 1887-1896, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32889607

ABSTRACT

PURPOSE: Red and processed meats are recognized by the International Agency for Research on Cancer as probably carcinogenic and carcinogenic to humans, respectively. Heme iron has been proposed as a central factor responsible for this effect. Furthermore, anxiety affects the intestinal barrier function by increasing intestinal permeability. The objective of this work was to assess how anxiety modifies the association between red and processed meat consumption and cancer risk in the NutriNet-Santé prospective cohort (2009-2019). METHODS: Using multi-adjusted Cox models in a sample of 101,269 subjects, we studied the associations between the consumption of red and processed meat, the amount of heme iron coming from these meats and overall, colorectal, prostate, and breast cancer risks, overall and separately among participants with and without anxiety. RESULTS: An increase in red and processed meat consumption was associated with an increased risk of developing colorectal cancer in the total population (HR for an increase of 50 g/day = 1.18 (1.01-1.37), p = 0.03). After stratification on anxiety, the HR 50 g/day was 1.42 (1.03-1.94, p = 0.03) in anxious participants and 1.12 (0.94-1.33, p = 0.20) in other participants. Similar trends were observed for overall cancer risk. Analyses conducted with heme iron also provided similar results. CONCLUSIONS: Our results strengthen the existing body of evidence supporting that red and processed meat consumption and heme iron intake are associated with an increased risk of overall and more specifically colorectal cancer, and suggest that anxiety modifies these associations, with an increased risk in anxious participants.


Subject(s)
Breast Neoplasms , Meat Products , Red Meat , Anxiety/epidemiology , Anxiety/etiology , Cohort Studies , Diet/adverse effects , Female , Humans , Male , Meat , Prospective Studies , Risk Factors
8.
Arch Toxicol ; 94(9): 3173-3184, 2020 09.
Article in English | MEDLINE | ID: mdl-32617661

ABSTRACT

The incidence of inflammatory bowel diseases (IBD) is increasing in both Western and developing countries. IBD are multifactorial disorders involving complex interactions between genetic, immune, and environmental factors such as exposure to food contaminants. Deoxynivalenol (DON) is the most prevalent mycotoxin that contaminates staple food and induces intestinal breakdown and inflammatory response. To delineate the role of DON oral exposure in IBD, we used a Dextran sulfate sodium (DSS) colitis model in rats fed with a DON-contaminated diet or a control diet for 4 weeks. Colitis was induced in the 4th week by increasing concentrations of DSS in the drinking water (0, 2, 3 or 5%). DON exacerbated body weight loss and accelerated the appearance of symptoms in animals treated with DSS. DON increased morphological damage, pro-inflammatory markers (myeloperoxidase, CXCL-1 and IL-1ß) and immune cell responses. In lamina propria of the rat with colitis, DON increased adaptive and innate immune responses after anti-CD3/28 or LPS stimulation, respectively. In the spleen, DON increased IFNγ secretion and reduced Treg populations. Interestingly, De-epoxy-DON (DOM-1) a detoxified form of DON did not have any consequences on colitis. These results suggest that DON is a risk factor in the onset of IBD.


Subject(s)
Food Contamination , Inflammatory Bowel Diseases/chemically induced , Mycotoxins/toxicity , T-Lymphocytes, Regulatory/drug effects , Trichothecenes/toxicity , Animals , Colitis , Dextran Sulfate , Diet , Disease Models, Animal , Intestines , Male , Rats
9.
Sci Rep ; 10(1): 6489, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32300166

ABSTRACT

Peroxisome proliferator activated receptor α (PPARα) acts as a fatty acid sensor to orchestrate the transcription of genes coding for rate-limiting enzymes required for lipid oxidation in hepatocytes. Mice only lacking Pparα in hepatocytes spontaneously develop steatosis without obesity in aging. Steatosis can develop into non alcoholic steatohepatitis (NASH), which may progress to irreversible damage, such as fibrosis and hepatocarcinoma. While NASH appears as a major public health concern worldwide, it remains an unmet medical need. In the current study, we investigated the role of hepatocyte PPARα in a preclinical model of steatosis. For this, we used High Fat Diet (HFD) feeding as a model of obesity in C57BL/6 J male Wild-Type mice (WT), in whole-body Pparα- deficient mice (Pparα-/-) and in mice lacking Pparα only in hepatocytes (Pparαhep-/-). We provide evidence that Pparα deletion in hepatocytes promotes NAFLD and liver inflammation in mice fed a HFD. This enhanced NAFLD susceptibility occurs without development of glucose intolerance. Moreover, our data reveal that non-hepatocytic PPARα activity predominantly contributes to the metabolic response to HFD. Taken together, our data support hepatocyte PPARα as being essential to the prevention of NAFLD and that extra-hepatocyte PPARα activity contributes to whole-body lipid homeostasis.


Subject(s)
Hepatocytes/pathology , Liver/pathology , Non-alcoholic Fatty Liver Disease/immunology , Obesity/metabolism , PPAR alpha/deficiency , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Gene Expression Profiling , Hepatocytes/immunology , Humans , Lipid Metabolism/immunology , Lipidomics , Liver/cytology , Liver/immunology , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/etiology , Obesity/immunology , Obesity/pathology , PPAR alpha/genetics
10.
BMC Complement Med Ther ; 20(1): 33, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32024512

ABSTRACT

BACKGROUND: Obesity is a major public health concern worldwide. A sedentary life and a nutritional transition to processed foods and high-calorie diets are contributing factors to obesity. The demand for nutraceutical foods, such as herbal weight-loss products, which offer the potential to counteract obesity, has consequently increased. We hypothesised that Opuntia cladodes consumption could assist weight management in an obesity prevention context. METHODS: This study was designed to explore the anti-adipogenic effects of lyophilised Opuntia cladode powders (OCP) in an in vitro cellular model for adipocyte differentiation and an in vivo high-fat-diet (HFD)-induced obesity rat model. Two OCP were tested, one from wild species O. streptacantha and the second from the most known species O. ficus-indica. RESULTS: Pre-adipocytes 3 T3-F442A were treated by OCP during the differentiation process by insulin. OCP treatment impaired the differentiation in adipocytes, as supported by the decreased triglyceride content and a low glucose uptake, which remained comparable to that observed in undifferentiated controls, suggesting that an anti-adipogenic effect was exerted by OCP. Sprague-Dawley rats were fed with a normal or HFD, supplemented or not with OCP for 8 weeks. OCP treatment slightly reduced body weight gain, liver and abdominal fat weights, improved some obesity-related metabolic parameters and increased triglyceride excretion in the faeces. Taken together, these results showed that OCP might contribute to reduce adipogenesis and fat storage in a HFD context, notably by promoting the faecal excretion of fats. CONCLUSIONS: Opuntia cladodes may be used as a dietary supplement or potential therapeutic agent in diet-based therapies for weight management to prevent obesity.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Dietary Supplements , Feces/chemistry , Obesity/drug therapy , Opuntia , Animals , Body Weight/drug effects , Cell Differentiation/drug effects , Diet, High-Fat , Glucose/metabolism , Male , Mexico , Powders , Rats , Rats, Sprague-Dawley , Triglycerides/metabolism
11.
Sci Rep ; 8(1): 7019, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29728575

ABSTRACT

The extraction of RNA and lipids from a large number of biological samples is time-consuming and costly with steps required for both transcriptomic and lipidomic approaches. Most protocols rely on independent extraction of nucleic acids and lipids from a single sample, thereby increasing the need for biological material and inducing variability in data analysis. We investigated whether it is possible to use a standard RNA extraction procedure to analyze not only RNA levels, but also lipids in a single liver sample. We show that the organic phase obtained when using standard reagents for RNA extraction can be used to analyze lipids, including neutral lipids and fatty acids, by gas chromatography. We applied this technique to an analysis of lipids and the associated gene expression pattern in mice with hepatic steatosis induced by pharmacological activation of nuclear receptor LXR.


Subject(s)
Lipids/isolation & purification , RNA, Messenger/isolation & purification , Animals , Chemical Fractionation/methods , Gene Expression Profiling , Lipids/chemistry , Liver/chemistry , Liver/metabolism , Mice , RNA, Messenger/chemistry , Reproducibility of Results
12.
Mol Cell Endocrinol ; 471: 75-88, 2018 08 15.
Article in English | MEDLINE | ID: mdl-28774777

ABSTRACT

The liver plays a central role in the regulation of fatty acid metabolism. Hepatocytes are highly sensitive to nutrients and hormones that drive extensive transcriptional responses. Nuclear hormone receptors are key transcription factors involved in this process. Among these factors, PPARα is a critical regulator of hepatic lipid catabolism during fasting. This study aimed to analyse the wide array of hepatic PPARα-dependent transcriptional responses during fasting. We compared gene expression in male mice with a hepatocyte specific deletion of PPARα and their wild-type littermates in the fed (ad libitum) and 24-h fasted states. Liver samples were acquired, and transcriptome and lipidome analyses were performed. Our data extended and confirmed the critical role of hepatocyte PPARα as a central for regulator of gene expression during starvation. Interestingly, we identified novel PPARα-sensitive genes, including Cxcl-10, Rab30, and Krt23. We also found that liver phospholipid remodelling was a novel fasting-sensitive pathway regulated by PPARα. These results may contribute to investigations on transcriptional control in hepatic physiology and underscore the clinical relevance of drugs that target PPARα in liver pathologies, such as non-alcoholic fatty liver disease.


Subject(s)
Fasting , Hepatocytes/metabolism , PPAR alpha/metabolism , Animals , Gene Expression Profiling , Gene Expression Regulation , Glycolipids/metabolism , Homeostasis , Lipid Metabolism/genetics , Liver/metabolism , Mice, Inbred C57BL , Transcriptome/genetics
13.
Cell Rep ; 21(2): 403-416, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29020627

ABSTRACT

While the physiological benefits of the fibroblast growth factor 21 (FGF21) hepatokine are documented in response to fasting, little information is available on Fgf21 regulation in a glucose-overload context. We report that peroxisome-proliferator-activated receptor α (PPARα), a nuclear receptor of the fasting response, is required with the carbohydrate-sensitive transcription factor carbohydrate-responsive element-binding protein (ChREBP) to balance FGF21 glucose response. Microarray analysis indicated that only a few hepatic genes respond to fasting and glucose similarly to Fgf21. Glucose-challenged Chrebp-/- mice exhibit a marked reduction in FGF21 production, a decrease that was rescued by re-expression of an active ChREBP isoform in the liver of Chrebp-/- mice. Unexpectedly, carbohydrate challenge of hepatic Pparα knockout mice also demonstrated a PPARα-dependent glucose response for Fgf21 that was associated with an increased sucrose preference. This blunted response was due to decreased Fgf21 promoter accessibility and diminished ChREBP binding onto Fgf21 carbohydrate-responsive element (ChoRE) in hepatocytes lacking PPARα. Our study reports that PPARα is required for the ChREBP-induced glucose response of FGF21.


Subject(s)
Fibroblast Growth Factors/metabolism , Glucose/metabolism , Nuclear Proteins/metabolism , PPAR alpha/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cells, Cultured , Female , Fibroblast Growth Factors/genetics , Hepatocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Nuclear Proteins/genetics , PPAR alpha/genetics , Response Elements , Transcription Factors/genetics
14.
Article in English | MEDLINE | ID: mdl-27845248

ABSTRACT

This study examined the fatty acid composition of three sympatric tropical tuna species (bigeye Thunnus obesus, yellowfin T. albacares and skipjack tuna Kastuwonus pelamis) sampled in the Western Indian Ocean in 2013. The fatty acid compositions of neutral and polar lipids, respectively involved in energy storage and cell membrane structure, were explored and compared in four tissues (red and white muscles, liver and gonads), according to biological (size, sex and maturity) and environmental (season and area) factors. The liver and the red muscle were the fattest tissues (i.e., higher levels of storage lipids) in all species and polar lipids were the lowest in the white muscle. Species and tissue types explained most differences in fatty acid compositions, while environmental factors had limited effects, except in the hepatic cell membrane where fatty acid composition varied with monsoons. Docosahexaenoic acid (22:6n-3) was the major fatty acid in both polar and neutral lipid fractions, especially in muscles. Eicosapentaenoic acid (20:5n-3) and oleic acid (18:1n-9) were in higher proportion in neutral than in polar lipids. Arachidonic acid (20:4n-6) and 22:6n-3, together with docosapentaenoic acid (22:5n-6) and stearic acid (18:0), showed preferential accumulation in polar lipids. 20:4n-6 was particularly involved in cell membranes of ovary and white muscle. Overall, an important inter-individual variability in fatty acid compositions of structural lipids was found within tissue types despite considering biological factors that are most likely to influence this type of lipids. It suggests that fatty acid profiles are influenced by individual-specific behaviors.


Subject(s)
Fatty Acids/metabolism , Tuna/metabolism , Animals , Chromatography, Gas
15.
Int J Mol Sci ; 17(10)2016 Sep 24.
Article in English | MEDLINE | ID: mdl-27669233

ABSTRACT

The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.


Subject(s)
Dietary Fats , Liver/metabolism , PPAR alpha/genetics , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Body Weight , Cholesterol/blood , Cytochrome P-450 Enzyme System/genetics , Cytochrome P450 Family 4/genetics , Fasting , Fatty Liver/metabolism , Fatty Liver/pathology , Fibroblast Growth Factors/genetics , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR alpha/metabolism , RNA, Messenger/metabolism , Triglycerides/blood
16.
Gut ; 65(7): 1202-14, 2016 07.
Article in English | MEDLINE | ID: mdl-26838599

ABSTRACT

OBJECTIVE: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD). DESIGN: We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing. RESULTS: Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing. CONCLUSIONS: Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD.


Subject(s)
Aging , Fatty Acids/metabolism , Fibroblast Growth Factors/genetics , Hepatocytes , Non-alcoholic Fatty Liver Disease/genetics , PPAR alpha/genetics , Adipocytes , Aging/physiology , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P450 Family 4/genetics , Disease Models, Animal , Fasting , Fenofibrate/pharmacology , Fibroblast Growth Factors/biosynthesis , Gene Expression/drug effects , Gene Expression Profiling , Homeostasis/genetics , Hypoglycemia/genetics , Hypolipidemic Agents/pharmacology , Hypothermia/genetics , Lipid Metabolism/genetics , Lipolysis/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Overweight/genetics , PPAR alpha/metabolism , RNA, Messenger/metabolism , Triglycerides/metabolism
17.
Toxicol Mech Methods ; 25(6): 448-58, 2015.
Article in English | MEDLINE | ID: mdl-26365763

ABSTRACT

CONTEXT: Hexachlorobenzene (HCB), a persistent chlorinated organic chemical, could be detected in human tissues in several countries of the world. Human exposure to Persistent Organic Pollutants (POPs) occurring primarily through diet, HCB and its metabolites are therefore supposed to interact directly with intestinal mucosa. OBJECTIVE: The aim of this study was to investigate the possible effects of low doses of HCB on DNA integrity, cellular viability, differentiation and oxidative status in vitro in human colonic carcinoma cell line Caco-2. MATERIALS AND METHODS: Cells were exposed to increasing doses of HCB for 14 days to assess the cytotoxic, genotoxic and oxidative properties of this compound. The involvement of oxidative stress in the observed effects was evaluated by co exposure of Caco-2 cells with HCB and α-tocopherol. RESULTS: Exposure of Caco-2 cells to HCB resulted in a dose-dependent cytotoxicity, DNA damages and alterations of the cell layer integrity and the barrier function. Moreover, exposure of Caco-2 cells to HCB led to an enhancement of H(2)O(2) production and to an increased activity of antioxidant enzymes. In addition, Co exposure of Caco-2 cells to HCB and α-tocopherol reversed the effects observed in cells exposed to HCB alone. CONCLUSION: These results suggested that HCB effects on Caco-2 cells could be linked, at least in part, to its pro-oxidative potential.


Subject(s)
DNA Damage , Epithelial Cells/drug effects , Fungicides, Industrial/toxicity , Hexachlorobenzene/toxicity , Intestinal Mucosa/drug effects , Oxidants/toxicity , Oxidative Stress/drug effects , Antioxidants/pharmacology , Caco-2 Cells , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Comet Assay , Dose-Response Relationship, Drug , Electric Impedance , Enzymes/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Hydrogen Peroxide/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Risk Assessment , Time Factors
18.
Rapid Commun Mass Spectrom ; 29(13): 1253-67, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26395609

ABSTRACT

RATIONALE: The bias associated with lipid contents in fish tissues is a recalcitrant topic for trophic studies using stable isotopes. Lipids are depleted in the heavy carbon isotope ((13)C) and the lipid content varies considerably among species, tissues and in both time and space. We have applied and assessed different correction methods for tropical tuna tissues. METHODS: We tested two types of normalization methods to deal with variable lipid content in liver, gonads, and white and red muscles of yellowfin, bigeye and skipjack tuna: a chemical extraction using dichloromethane and a mathematical correction based on three modeling approaches (linear, non-linear and mass balance models). We measured isotopic ratios of bulk and lipid-free tissues and assessed the predictive ability of the correction models with the lipid-free measurements. The parameters of the models were estimated from our dataset and from results from published studies on other species. RESULTS: Comparison between bulk, lipid-free and lipid-corrected isotopic ratios demonstrated that (1) chemical extraction using dichloromethane did not affect δ(15)N values; (2) the change in δ(13)C values after extraction was tissue-specific; (3) lipid-normalization models using published parameter estimates failed to predict lipid-corrected δ(13)C values; and (4) linear and non-linear models using parameters estimated for each tissue from our dataset provided accurate δ(13)C predictions for all tissues, and mass balance model for white muscle only. CONCLUSIONS: Models using published estimates for parameters from other species cannot be used. Based on a range of lipid content that do not exceed 45%, we recommend the linear model to correct the bulk δ(13)C values in the investigated tissues but the parameters have to be estimated from a proportion of the original data for which chemical extraction is required and the isotopic values of bulk and lipid-free tissues are measured.


Subject(s)
Carbon Isotopes/analysis , Lipids/analysis , Nitrogen Isotopes/analysis , Tuna , Animals , Chemical Fractionation , Female , Fish Proteins/analysis , Indian Ocean , Lipids/isolation & purification , Liver/chemistry , Male , Mass Spectrometry/methods , Models, Theoretical , Muscle, Skeletal/chemistry , Tropical Climate
19.
Toxicol Rep ; 1: 474-489, 2014.
Article in English | MEDLINE | ID: mdl-28962261

ABSTRACT

In Burkina Faso, as in most Sahelian countries, the failure to follow good agricultural practices coupled with poor soil and climate conditions in the locust control context lead to high environmental contaminations with pesticide residues. Thus, consumers being orally exposed to a combination of multiple pesticide residues through food and water intake, the digestive tract is a tissue susceptible to be directly exposed to these food contaminants. The aim of our work was to compare in vitro the impact of five desert locust control pesticides (Deltamethrin DTM, Fenitrothion FNT, Fipronil FPN, Lambda-cyalothrine LCT, and Teflubenzuron TBZ) alone and in combination on the human intestinal Caco-2 cells viability and function. Cells were exposed to 0.1-100 µM pesticides for 10 days alone or in mixture (MIX). Our results showed a cytotoxic effect of DTM, FNT, FPN, LCT, and TBZ alone or in combination in human intestinal Caco-2 cells. The most efficient were shown to be FPN and FNT impacting the cell layer integrity and/or barrier function, ALP activity, antioxidant enzyme activity, lipid peroxidation, Akt activation, and apoptosis. The presence of antioxidant reduced lipid peroxidation level and attenuated the pesticides-induced cell toxicity, suggesting that key mechanism of pesticides cytotoxicity may be linked to their pro-oxidative potential. A comparative analysis with the predicted cytotoxic effect of pesticides mixture using mathematical modeling shown that the combination of these pesticides led to synergistic effects rather than to a simple independent or dose addition effect.

20.
Toxicol In Vitro ; 26(5): 718-26, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22515965

ABSTRACT

Low amounts of residual pesticides are present in the environment, often as mixtures of chemicals which contaminate drinking water and food, being a source of chronic exposure for humans and a growing matter of concern in public health policy. Despite of the needs and growing investigation, little is known about the impact of low doses and mixtures of these chemicals on human health. The purpose of this study was to enlighten if modifications of liver cell metabolic- and/or defence-related capacities could occur under such exposures. In vitro perturbations of several metabolic, stress and survival pathways in human and mice cultured hepatocytes and liver cells were evaluated under exposure to low doses of single molecules or equimolecular combinations of the three pesticides, atrazine, chlorpyrifos and endosulfan. Mainly phases I and II enzymes of detoxification were found modulated, together with apoptotic process deregulation. Hence, CYP3A4 and CYP3A11 were upregulated in primary cultured human and mouse hepatocytes, respectively. These inductions were correlated to an anti-apoptotic process (increased Bcl-xL/Bax ratio, inhibition of the PARP protein cleavage). Such disturbances in pathways involved in cell protection may possibly account for initiation of pathologies or decrease in drugs efficiency in humans exposed to multiple environmental contaminants.


Subject(s)
Atrazine/toxicity , Chlorpyrifos/toxicity , Endosulfan/toxicity , Hepatocytes/drug effects , Pesticides/toxicity , Animals , Cell Line , Cells, Cultured , Female , Gene Expression Profiling , Hepatocytes/metabolism , Humans , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...