Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(8)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893552

ABSTRACT

Increased drug efflux compromises the efficacy of a large panel of treatments in the clinic against cancer or bacterial, fungal, and viral diseases, and in agriculture due to the emergence of multidrug-resistant pathogenic fungi. Until recently, to demonstrate increased drug efflux, the use of labeled drugs or fluorescent dyes was necessary. With the increasing sensitivity of detection devices, direct assessment of drug efflux has become realistic. Here, we describe a medium-throughput method to assess the intracellular drug concentration in the plant pathogenic fungus Zymoseptoria tritici cultivated in the presence of a sublethal fungicide concentration. As a model fungicide, we used the succinate-dehydrogenase inhibitor boscalid. The boscalid concentration was assessed in the different culture fractions using mass spectrometry linked to liquid chromatography (LC-MS/MS). The ratio between the intracellular and total boscalid amount was used as an inversed proxy for the efflux activity. Using isogenic mutant strains known for their differential efflux capacities, we validated the negative correlation between the intracellular boscalid concentration and efflux activity. In addition, intra-cellular fungicide accumulation explains the susceptibility of the tested strains to boscalid. This assay may be useful in lead development when a new molecule displays good inhibitory activity against its isolated target protein but fails to control the target organism.

2.
Environ Microbiol ; 24(3): 1117-1132, 2022 03.
Article in English | MEDLINE | ID: mdl-34490974

ABSTRACT

Acquired resistance is a threat to antifungal efficacy in medicine and agriculture. The diversity of possible resistance mechanisms and highly adaptive traits of pathogens make it difficult to predict evolutionary outcomes of treatments. We used directed evolution as an approach to assess the resistance risk to the new fungicide fenpicoxamid in the wheat pathogenic fungus Zymoseptoria tritici. Fenpicoxamid inhibits complex III of the respiratory chain at the ubiquinone reduction site (Qi site) of the mitochondrially encoded cytochrome b, a different site than the widely used strobilurins which inhibit the same complex at the ubiquinol oxidation site (Qo site). We identified the G37V change within the cytochrome b Qi site as the most likely resistance mechanism to be selected in Z. tritici. This change triggered high fenpicoxamid resistance and halved the enzymatic activity of cytochrome b, despite no significant penalty for in vitro growth. We identified negative cross-resistance between isolates harbouring G37V or G143A, a Qo site change previously selected by strobilurins. Double mutants were less resistant to both QiIs and quinone outside inhibitors compared to single mutants. This work is a proof of concept that experimental evolution can be used to predict adaptation to fungicides and provides new perspectives for the management of QiIs.


Subject(s)
Ascomycota , Fungicides, Industrial , Ascomycota/genetics , Cytochromes b/genetics , Drug Resistance, Fungal/genetics , Fungicides, Industrial/pharmacology , Lactones , Plant Diseases/microbiology , Pyridines , Strobilurins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...